Knauer, Markus Wendelin und Denninger, Maximilian und Triebel, Rudolph (2022) RECALL: Rehearsal-free Continual Learning for Object Classification. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. IEEE/RSJ. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), 2022-10-24 - 2022-10-26, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9981968. ISBN 978-166547927-1. ISSN 2153-0858.
Dies ist die aktuellste Version dieses Eintrags.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9981968
Kurzfassung
Convolutional neural networks show remarkable results in classification but struggle with learning new things on the fly. We present a novel rehearsal-free approach, where a deep neural network is continually learning new unseen object categories without saving any data of prior sequences. Our approach is called RECALL, as the network recalls categories by calculating logits for old categories before training new ones. These are then used during training to avoid changing the old categories. For each new sequence, a new head is added to accommodate the new categories. To mitigate forgetting, we present a regularization strategy where we replace the classification with a regression. Moreover, for the known categories, we propose a Mahalanobis loss that includes the variances to account for the changing densities between known and unknown categories. Finally, we present a novel dataset for continual learning, especially suited for object recognition on a mobile robot (HOWS-CL-25), including 150,795 synthetic images of 25 household object categories. Our approach RECALL outperforms the current state of the art on CORe50 and iCIFAR-100 and reaches the best performance on HOWS-CL-25.
elib-URL des Eintrags: | https://elib.dlr.de/190097/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | Presentation: https://www.youtube.com/watch?v=P9buxiinVeI | ||||||||||||||||
Titel: | RECALL: Rehearsal-free Continual Learning for Object Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9981968 | ||||||||||||||||
Verlag: | IEEE/RSJ | ||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Computer Vision, Continual Learning, Online Learning, Incremental Learning, Machine Learning, Deep Learning, Classification | ||||||||||||||||
Veranstaltungstitel: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022) | ||||||||||||||||
Veranstaltungsort: | Kyoto, Japan | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 24 Oktober 2022 | ||||||||||||||||
Veranstaltungsende: | 26 Oktober 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||
Hinterlegt von: | Knauer, Markus Wendelin | ||||||||||||||||
Hinterlegt am: | 05 Dez 2022 14:40 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Verfügbare Versionen dieses Eintrags
- RECALL: Rehearsal-free Continual Learning for Object Classification. (deposited 05 Dez 2022 14:40) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags