Meyer, Lukas and Klüpfel, Leonard and Durner, Maximilian and Triebel, Rudolph (2022) Robust Probabilistic Robot Arm Keypoint Detection Exploiting Kinematic Knowledge. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Probabilistic Robotics in the Age of Deep Learning. Workshop on Probabilistic Robotics in the Age of Deep Learning, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022-10-27, Kyoto, Japan.
PDF
1MB | |
PDF
3MB |
Official URL: https://probabilisticrobotics.github.io/#04
Abstract
We propose PK-ROKED, a novel probabilistic deep-learning algorithm to detect keypoints of a robotic manipulator in camera images and to robustly estimate the positioning inaccuracies w.r.t the camera frame. Our algorithm uses monocular images as a primary input source and augments these with prior knowledge about the keypoint locations based on the robot's forward kinematics. As output, the network provides 2D image coordinates of the keypoints and an associated uncertainty measure, where the latter is obtained using MonteCarlo dropout. In experiments on two different robotic systems, we show that our network provides superior detection results compared to the state-of-the-art. We furthermore analyze the precision of different estimation approaches to obtain an uncertainty measure.
Item URL in elib: | https://elib.dlr.de/189993/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Robust Probabilistic Robot Arm Keypoint Detection Exploiting Kinematic Knowledge | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Probabilistic Robotics in the Age of Deep Learning | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Deep-Learning, Robot Pose Estimation, Uncertainty estimation | ||||||||||||||||||||
Event Title: | Workshop on Probabilistic Robotics in the Age of Deep Learning, IEEE/RSJ International Conference on Intelligent Robots and Systems | ||||||||||||||||||||
Event Location: | Kyoto, Japan | ||||||||||||||||||||
Event Type: | Workshop | ||||||||||||||||||||
Event Date: | 27 October 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||
DLR - Research theme (Project): | R - Explainable Robotic AI, R - Planetary Exploration | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||
Deposited By: | Burkhard, Lukas | ||||||||||||||||||||
Deposited On: | 05 Dec 2022 13:49 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page