
Robust Probabilistic Robot Arm Keypoint Detection
Exploiting Kinematic Knowledge

Lukas Meyer1∗, Leonard Klüpfel1∗, Maximilian Durner1, and Rudolph Triebel1,2

Abstract— We propose PK-ROKED, a novel probabilistic
deep-learning algorithm to detect keypoints of a robotic manip-
ulator in camera images and to robustly estimate the positioning
inaccuracies w.r.t the camera frame. Our algorithm uses monoc-
ular images as a primary input source and augments these with
prior knowledge about the keypoint locations based on the
robot’s forward kinematics. As output, the network provides
2D image coordinates of the keypoints and an associated
uncertainty measure, where the latter is obtained using Monte
Carlo dropout. In experiments on two different robotic systems,
we show that our network provides superior detection results
compared to the state-of-the-art. We furthermore analyze the
precision of different estimation approaches to obtain an
uncertainty measure.

I. INTRODUCTION

Robotic manipulation systems can suffer from an impre-
cise estimate of the robot’s forward kinematics. For robots
with a fixed camera observing the moving arm (so-called
eye-to-hand systems), vision algorithms can be used for cor-
rection. In this work, we propose an algorithm that detects the
position of the arm from the images and corrects the position
estimated from the forward kinematics. More precisely, our
algorithm provides distributions of 2D image locations for a
set of predefined keypoints of the robotic arm. These are then
fused with the forward kinematics using Bayesian filtering.
The fusion step of uncertain robot kinematics with 2D image
information is already discussed in [2].

In our present contribution, we focus on how to reli-
ably detect probabilistic 2D information of robotic arms
in images. For this task, we define fixed keypoints on a
robot arm and train a deep learning (DL) network to detect
these keypoints in monocular RGB images. In addition,
using Monte Carlo dropout, our network is able to provide
uncertainty estimates on the detected keypoints to enable the
probabilistic downstream fusion task. The network output is
visualized in Fig. 1.

The forward kinematics can be assumed as an erroneous
sensor, however with bounded error. We use this fact to aid
our network by providing it with prior kinematic knowledge
(PK) as additional input channels, i. e., heatmaps on areas in
the image that potentially contain the respective keypoints,
resulting in our Prior Knowledge - RObot KEypoint Detec-
tion (PK-ROKED) network.

We train our network using synthetic data and show the
performance on real world data sets of two different robots,

∗Equal contribution to this work
1Institute of Robotics and Mechatronics, German

Aerospace Center (DLR), 82234 Wessling, Germany
firstname.lastname@dlr.de 2School of Engineering and
Design, Technical University of Munich (TUM), 85521 Ottobrunn,
Germany

Fig. 1: top – The Lightweight Rover Unit (LRU) on Mt.
Etna during the ARCHES field test [1]. bottom – The
middle camera on the robot’s head records the movement of
the Jaco2 arm. Detected keypoints (red), the corresponding
uncertainty ellipses (yellow), and detected false positives
(petrol) in the background are shown.

once the Panda arm using the data sets of [3] and once
the Jaco2 arm of our own Lightweight Rover Unit (LRU)
– see Fig. 1. For comparison, we use the DREAM network
from [3] as baseline and show that PK-ROKED outperforms
DREAM in all scenarios.

II. RELATED WORK

Several works use DL methods on monocular images
to detect robotic arms. The previously mentioned DREAM
network [3] considers the joints of a robot arm as keypoints
and extracts their 2D image coordinates from heatmaps.
The work of [4] detects 2D robot keypoints as well, but
additionally considers optimization steps to select an optimal
subset of a group of potential keypoints. Lambrecht et



ResNet layer

Dropout layer

Upsampling layer

Output headEncoder Decoder

concat

dr
op

ou
t

dr
op

ou
t

dr
op

ou
t

dr
op

ou
t

dr
op

ou
t

dr
op

ou
t

up
1

up
2

up
3

up
4

f1 f2 f3 f4

ou
tp

ut
he

ad

Fig. 2: The network architecture. The resulting t heatmaps per joint are stacked and constitute the belief map for uncertainty
computation. Note that for visualization purposes, the heatmaps of the individual joints are combined into one image.

al. [5] compute bounding boxes around the joints of a
robotic arm using image sequences. However, none of the
mentioned works consider prior kinematic knowledge for
robot arm detection and neither provide uncertainty estimates
that accompany their result.

III. NETWORK ARCHITECTURE AND PRIOR KINEMATIC
KNOWLEDGE

PK-ROKED uses an hourglass network architecture to
learn the keypoint representation of a robotic arm. In our
case, we consider the robot joint locations as keypoints and
use heatmaps of predicted keypoint locations with values
roughly between 0 and 1 as network output, similar to [3].

Our network architecture is shown in Fig. 2. The network
input consists of RGB images of a robot arm stacked together
with the heatmaps of k joints resulting in an input with
the dimension of 640 × 480 × (3 + k). The heatmaps are
obtained by projecting the 3D location of the keypoints
unto the camera image. These heatmaps are set to one at
the keypoint pixel location and zero otherwise, afterwards a
Gaussian smoothing is applied. For training, the heatmaps
use the ground truth keypoint information after an additional
perturbation. For inference, the heatmaps are directly ob-
tained from the (erroneous) robot kinematics.

The encoder downsamples the input to a 40× 30× 2048
bottleneck. We base our encoder on the first four layers of a
ResNet50 [6] network, pre-trained on ImageNet.

Our decoder upsamples the bottle neck representation to a
dimension of 640×480×k, resulting in k stacked heatmaps
of the predicted keypoint locations. The final output is
the keypoint locations in image coordinates, obtained by
finding the location of the highest valued pixel in the output
heatmaps.

The loss function is the mean squared error (MSE) mea-
suring the Euclidean distance between a ground truth heat
map and the prediction of the network.

IV. UNCERTAINTY COMPUTATION

To use the results of PK-ROKED for fusion tasks, it is
of key importance to correctly capture the uncertainty of the

measurements. For this, we evaluate several approaches to
capture both the model uncertainty (epistemic uncertainty)
and the data uncertainty (aleatoric uncertainty). As the results
are to be used with sensor fusion algorithms, mainly an
extended Kalman filter (EKF), we focus on the first and
second moment of the probability distribution, i. e., the mean
and the covariance.

A. Monte Carlo Dropout

We estimate our model uncertainty using Monte Carlo
dropout [7]. We place dropout layers at the mid-layers of
the hourglass, as suggested by [8] (visualized in Fig. 2).
In these dropout layers, the individual network weights are
randomly set to zero based on a previously defined Bernoulli
probability distribution, a technique that was initially devel-
oped as regularization method during training [9]. Dropouts
however, can also be used during inference to sample poste-
rior distributions using multiple forward passes of the same
input x∗. Thus, for every forward pass different entries of the
weights Ŵ are randomly set to zero, which is referred to as
Monte Carlo dropout [7]. In our implementation, the dropout
probability is set to p = 0.1. Our internal analysis shows that
sampling the network output with t = 20 stochastic forward
passes is a good trade-off between run-time efficiency and
probability approximation.

The resulting keypoint locations are the mean of the image
coordinates y∗

i = fŴ i(x∗) over all t forward passes:

E(y∗) =
1

t

t∑
i=1

y∗
i . (1)

B. Obtaining the Covariance Matrix

In this work, we analyze several different approaches to
use Monte Carlo dropout to obtain a covariance matrix that
correctly represents the uncertainty of the network prediction.
These methods are experimentally evaluated in Section VII-
B. The methods are:



Fig. 3: Accuracy of the keypoint detection on one synthetic and three real world evaluation data sets.

1) Explicit Uncertainty Computation: According to [7],
the covariance matrix Σ can be approximated as

Σ(y∗) ≈ τ−1ID +
1

t

t∑
i=1

y∗
i
Ty∗

i − E(y∗)TE(y∗), (2)

where τ−1 denotes the observation noise and ID is the
identity of dimension D. With the hyperparameter τ , we can
encode the aleatoric uncertainty, however with the assump-
tion that it is constant for all input data, i. e., homoscedastic
aleatoric uncertainty.

Another approach is to learn the aleatoric uncertainty,
following [10]. This assumes heteroscedastic aleatoric un-
certainty – a change of noise in the input data. We modify
our standard network with an additional output head, which
predicts the aleatoric uncertainty per pixel as described by
[10]. The term with τ in Eq. (2) is replaced by averaging the
pixel values of the second output head around each keypoint
location for all t forward passes.

2) Implicit Uncertainty Computation from Belief Maps:
The heatmap of the predicted keypoint locations can also
be viewed as a belief map approximating the probability of
keypoint locations. This interpretation considers the heatmap
of a single forward pass as a representation of the aleatoric
uncertainty. By accumulating the results of all t forward
passes into one heatmap, one can assume both aleatoric
and epistemic uncertainty to be combined in a single belief
map. The covariance (the second moment of the probability
distribution) is therefore analog to the second order central
image moment.

We transform the belief map into a binary image with a
threshold parameter of 0.6 and directly compute the covari-
ance matrix from the central second order image moments
[11]:

Σ(y∗) ≈
[
µ20 µ11

µ11 µ02

]
(3)

with

µij =
∑
u,v

(u− ū)i(v − v̄)jI(u, v). (4)

There, u and v denote the horizontal and vertical pixel
coordinates, ū and v̄ the image’s centroid, and I is the pixel

intensity value.

V. TRAINING AND EVALUATION DATA

We train and evaluate the network on two different robotic
arms. In both cases, the network is trained on synthetic data
and the results are evaluated on real world data.

The first robotic arm is Franka Emika’s Panda and the
corresponding data is provided by [3]. It is comprised of the
synthetic training data and also consists of two different real
world evaluation data sets, which we refer to as Panda 3Cam
RealSense and Panda ORB.

The other data sets are specifically generated by us for
the usage with the LRU rover. We render the Jaco2 arm and
the attached docking interface from its URDF representation
in the tool BlenderProc [12] and apply several domain ran-
domization techniques, such as different background scenes,
varied robot and camera poses, and changing textures. During
training, the images are subjected to further randomized
augmentations, e. g., Gaussian noise, coarse dropout, image
or channel flipping, and brightness contrast.

The real world evaluation data set is created with the
LRU rover, by commanding different joint configurations
and recording the arm movement using the system’s head
cameras; all in an indoor environment. The ground truth is
obtained using a Vicon tracking system to track markers
that are attached to the vicinity of the end-effector via
the docking interface and are calibrated using a hand-eye
calibration approach. Note that there is a non-observable
residual calibration error on the tracking orientation, thus
we consider only the ground truth of the last 3 joints for our
performance evaluation.

VI. ACCURACY EVALUATION

We compare the accuracy of four different network archi-
tectures:

• Our architecture PK-ROKED with kinematic priors.
• Our architecture ROKED, that is PK-ROKED without

using PK as additional input channels.
• The DREAM architecture [3] serving as baseline.
• We augment DREAM to consider heatmaps with kine-

matic priors as additional input: DREAM w/ PK.



A. Accuracy Metric – Percentage of Correct Keypoints
The percentage of correct keypoints (PCK) measures the

accuracy of the network output over the whole evaluation
data set. The PCK@c is the percentage of all correctly
detected keypoints within a threshold radius of c pixels
around the ground truth keypoint locations.

B. Network Accuracy Performance
Figure 3 shows the accuracy results for the four network

architectures on different data sets.
First, we evaluate the networks on the two real world

Panda data sets provided by [3]. For both data sets,
PK-ROKED outperforms the other algorithms, even though
all achieve high accuracy rates. The Panda ORB appears to
be the more challenging data set and algorithms that consider
PK can handle this challenge more accurately. Interestingly,
for the Panda 3Cam RealSense data set, we can reproduce the
accuracy results of DREAM as reported by [3] but achieve
a slightly inferior result on the Panda Orb data set.

For the synthetic Jaco2 data, all networks perform with
a high accuracy and PK-ROKED achieves the best results.
For the real world Jaco2 data, the performance decreases
significantly compared to all other data sets. We attribute
this to a strong sim-to-real gap due to reflections on the arm
and clutter in the image background. However, the relative
performance remains similar: Networks that consider prior
kinematic knowledge outperform the other architectures and
PK-ROKED provides the overall best accuracy.

In the end, two primary observations regarding the net-
work accuracy can be made: First, the results underline
our motivation to incorporate kinematic priors into robot
keypoint detection algorithms and confirm the performance
improvements. Second, our ROKED architecture (both with
and without prior knowledge) can be considered superior to
the DREAM network. Only with the Panda 3Cam RealSense
data, DREAM performs better than ROKED, which we
attribute to a small sim-to-real gap in the data.

VII. UNCERTAINTY EVALUATION

A. Uncertainty Representation – Precision
This metric allows us to evaluate the quality of uncertainty

estimation. The precision is defined as

precision@s =
TP

TP + FP
, (5)

with TP and FP denoting the number of true and false
positive keypoint detections. A TP is a keypoint result that
lies within a boundary defined by the covariance matrix, a
FP lies outside the boundary. The precision is evaluated for
boundaries that are provided as several multiples s of the
covariance matrix’ two-dimensional standard deviation σ.

B. Network Uncertainty Precision
Figure 4 shows the precision obtained by PK-ROKED for

the different covariance computation methods described in
Section IV.. As reference, the corresponding curve defined
for an ideal normal distribution is plotted. This means, that
e. g., at a sigma multiplier s = 1, 68% of data points are
within that boundary.

Fig. 4: Precision results for different uncertainty computation
methods for the real world Jaco2 data (solid) and the
corresponding synthetic data (dashed).

We evaluate the precision results of our three uncertainty
computation approaches on synthetic and real data. For both
data sets, it stands out that all explicit covariance computa-
tion methods fail to correctly encapsulate the uncertainty of
the keypoint detection. The covariance matrices obtained by
these methods are usually very overconfident.

On the other hand, obtaining the covariance matrix by
the image moments on the output belief maps provides a
precision very close to the reference normal distribution. We
therefore argue that the stacked output belief maps over t =
20 forward passes are a realistic representation of the true
network uncertainty. Subsequently, using the image moments
to obtain a covariance matrix is therefore the most promising
approach for this algorithm in combination with a down-
stream fusion task.

VIII. CONCLUSION

With PK-ROKED, we present a DL network that allows
to robustly detect keypoints on robotic arms. It does not
only outperform the state-of-the-art but additionally provides
a realistic uncertainty estimate for the detected keypoints,
such that the network output can be used in downstream
sensor fusion approaches. We elaborate that using Monte
Carlo dropout to create belief maps and subsequently obtain
the estimation uncertainty via image moments is a reliable
approach to obtain uncertainty estimates. We furthermore
show that adding the available knowledge of the robot
kinematics as input to the keypoint detection network sig-
nificantly increases the accuracy of both evaluated networks.
We therefore argue that the usage of robotic kinematic
knowledge as additional network input should be considered
whenever possible.

REFERENCES

[1] M. J. Schuster, M. G. Müller, S. G. Brunner, H. Lehner, P. Lehner,
R. Sakagami, A. Dömel, L. Meyer, B. Vodermayer, R. Giubilato,
M. Vayugundla, J. Reill, F. Steidle, I. von Bargen, K. Bussmann,
R. Belder, P. Lutz, W. Stürzl, M. Smı́šek, M. Maier, S. Stoneman, A. F.



Prince, B. Rebele, M. Durner, E. Staudinger, S. Zhang, R. Pöhlmann,
E. Bischoff, C. Braun, S. Schröder, E. Dietz, S. Frohmann, A. Börner,
H. Hübers, B. Foing, R. Triebel, A. O. Albu-Schäffer, and A. Wedler,
“The ARCHES space-analogue demonstration mission: Towards het-
erogeneous teams of autonomous robots for collaborative scientific
sampling in planetary exploration,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 5315–5322, 2020.

[2] L. Meyer, K. H. Strobl, and R. Triebel, “The Probabilistic Robot
Kinematics Model and its Application to Sensor Fusion,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2022.

[3] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer,
D. Fox, and S. Birchfield, “Camera-to-robot pose estimation from a
single image,” in 2020 IEEE International Conference on Robotics
and Automation, 2020, pp. 9426–9432.

[4] J. Lu, F. Richter, and M. C. Yip, “Pose Estimation for Robot Manipu-
lators via Keypoint Optimization and Sim-to-Real Transfer,” in IEEE
Robotics and Automation Letters, vol. 7, Apr. 2022, pp. 4622–4629.

[5] J. Lambrecht, “Robust few-shot pose estimation of articulated robots
using monocular cameras and deep-learning-based keypoint detection,”
in International Conference on Robot Intelligence Technology and
Applications, 2019, pp. 136–141.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition. Las Vegas, NV, USA: IEEE, Jun. 2016, pp.
770–778.

[7] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning,” in International
Conference on Machine Learning. PMLR, Jun. 2016, pp. 1050–1059.

[8] A. Kendall, V. Badrinarayanan, and R. Cipolla, “Bayesian SegNet:
Model Uncertainty in Deep Convolutional Encoder-Decoder Architec-
tures for Scene Understanding,” in British Machine Vision Conference,
vol. 57, Oct. 2016, pp. 1–12.

[9] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, no. 56,
pp. 1929–1958, 2014.

[10] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?” in Advances in Neural Infor-
mation Processing Systems, vol. 30. Curran Associates, Inc., 2017.

[11] J. Flusser, B. Zitova, and T. Suk, Moments and Moment Invariants in
Pattern Recognition. Wiley, 2009.

[12] M. Denninger, M. Sundermeyer, D. Winkelbauer, Y. Zidan, D. Olefir,
M. Elbadrawy, A. Lodhi, and H. Katam, “BlenderProc,” arXiv, 2019.
[Online]. Available: http://arxiv.org/abs/1911.01911

http://arxiv.org/abs/1911.01911

	Introduction
	Related Work
	Network Architecture and Prior Kinematic Knowledge
	Uncertainty Computation
	Monte Carlo Dropout
	Obtaining the Covariance Matrix
	Explicit Uncertainty Computation
	Implicit Uncertainty Computation from Belief Maps


	Training and Evaluation Data
	Accuracy Evaluation
	Accuracy Metric – Percentage of Correct Keypoints
	Network Accuracy Performance

	Uncertainty Evaluation
	Uncertainty Representation – Precision
	Network Uncertainty Precision

	Conclusion
	References

