Meyer, Lukas und Klüpfel, Leonard und Durner, Maximilian und Triebel, Rudolph (2022) Robust Probabilistic Robot Arm Keypoint Detection Exploiting Kinematic Knowledge. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Probabilistic Robotics in the Age of Deep Learning. Workshop on Probabilistic Robotics in the Age of Deep Learning, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022-10-27, Kyoto, Japan.
PDF
1MB | |
PDF
3MB |
Offizielle URL: https://probabilisticrobotics.github.io/#04
Kurzfassung
We propose PK-ROKED, a novel probabilistic deep-learning algorithm to detect keypoints of a robotic manipulator in camera images and to robustly estimate the positioning inaccuracies w.r.t the camera frame. Our algorithm uses monocular images as a primary input source and augments these with prior knowledge about the keypoint locations based on the robot's forward kinematics. As output, the network provides 2D image coordinates of the keypoints and an associated uncertainty measure, where the latter is obtained using MonteCarlo dropout. In experiments on two different robotic systems, we show that our network provides superior detection results compared to the state-of-the-art. We furthermore analyze the precision of different estimation approaches to obtain an uncertainty measure.
elib-URL des Eintrags: | https://elib.dlr.de/189993/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Robust Probabilistic Robot Arm Keypoint Detection Exploiting Kinematic Knowledge | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Probabilistic Robotics in the Age of Deep Learning | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Deep-Learning, Robot Pose Estimation, Uncertainty estimation | ||||||||||||||||||||
Veranstaltungstitel: | Workshop on Probabilistic Robotics in the Age of Deep Learning, IEEE/RSJ International Conference on Intelligent Robots and Systems | ||||||||||||||||||||
Veranstaltungsort: | Kyoto, Japan | ||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||
Veranstaltungsdatum: | 27 Oktober 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Erklärbare Robotische KI, R - Planetare Exploration | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
Hinterlegt von: | Burkhard, Lukas | ||||||||||||||||||||
Hinterlegt am: | 05 Dez 2022 13:49 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags