Feng, Jianxiang and Lee, Jongseok and Durner, Maximilian and Triebel, Rudolph (2022) Bayesian Active Learning for Sim-to-Real Robotic Perception. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022-10-23 - 2022-10-27, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9982175. ISBN 978-166547927-1. ISSN 2153-0858.
This is the latest version of this item.
PDF
3MB |
Official URL: https://ieeexplore.ieee.org/document/9982175
Abstract
While learning from synthetic training data has recently gained an increased attention, in real-world robotic applications, there are still performance deficiencies due to the so-called Sim-to-Real gap. In practice, this gap is hard to resolve with only synthetic data. Therefore, we focus on an efficient acquisition of real data within a Sim-to-Real learning pipeline. Concretely, we employ deep Bayesian active learning to minimize manual annotation efforts and devise an autonomous learning paradigm to select the data that is considered useful for the human expert to annotate. To achieve this, a Bayesian Neural Network (BNN) object detector providing reliable un- certainty estimates is adapted to infer the informativeness of the unlabeled data. Furthermore, to cope with misalignments of the label distribution in uncertainty-based sampling, we develop an effective randomized sampling strategy that performs favorably compared to other complex alternatives. In our experiments on object classification and detection, we show benefits of our approach and provide evidence that labeling efforts can be reduced significantly. Finally, we demonstrate the practical effectiveness of this idea in a grasping task on an assistive robot.
Item URL in elib: | https://elib.dlr.de/188495/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Bayesian Active Learning for Sim-to-Real Robotic Perception | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9982175 | ||||||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Active Learning, Sim-to-Real, Robotic Perception | ||||||||||||||||||||
Event Title: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems | ||||||||||||||||||||
Event Location: | Kyoto, Japan | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 23 October 2022 | ||||||||||||||||||||
Event End Date: | 27 October 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||
DLR - Research theme (Project): | R - Autonomous learning robots [RO] | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||
Deposited By: | Feng, Jianxiang | ||||||||||||||||||||
Deposited On: | 05 Dec 2022 12:16 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:49 |
Available Versions of this Item
- Bayesian Active Learning for Sim-to-Real Robotic Perception. (deposited 05 Dec 2022 12:16) [Currently Displayed]
Repository Staff Only: item control page