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Bayesian Active Learning for Sim-to-Real Robotic Perception

Jianxiang Feng1,2, Jongseok Lee1, Maximilian Durner1,2 and Rudolph Triebel1,2

Abstract— While learning from synthetic training data has
recently gained an increased attention, in real-world robotic
applications, there are still performance deficiencies due to
the so-called Sim-to-Real gap. In practice, this gap is hard
to resolve with only synthetic data. Therefore, we focus on an
efficient acquisition of real data within a Sim-to-Real learning
pipeline. Concretely, we employ deep Bayesian active learning to
minimize manual annotation efforts and devise an autonomous
learning paradigm to select the data that is considered useful
for the human expert to annotate. To achieve this, a Bayesian
Neural Network (BNN) object detector providing reliable un-
certainty estimates is adapted to infer the informativeness of the
unlabeled data. Furthermore, to cope with misalignments of the
label distribution in uncertainty-based sampling, we develop an
effective randomized sampling strategy that performs favorably
compared to other complex alternatives. In our experiments
on object classification and detection, we show benefits of
our approach and provide evidence that labeling efforts can
be reduced significantly. Finally, we demonstrate the practical
effectiveness of this idea in a grasping task on an assistive robot.

I. INTRODUCTION

Over the last years, the performance of computer vision
increased sharply, leading to the urge of employing such ap-
proaches on robotic vision tasks such as object classification,
detection [1], [2] and pose estimation [3]. In this context, the
necessity of large amounts of annotated, task-related training
data is a main issue, particularly for tasks relying on semantic
features such as object classification or detection. Therefore,
a compelling solution is to learn from synthetic data. Like
this, large amount of annotated data can be obtained from
simulation with relatively less time and manual efforts [4]–
[6]. With the emergence of open-source image synthesizing
pipelines [7], [8], this solution becomes even more accessi-
ble in practice. However, although these pipelines continue
improving in fidelity and become more photo-realistic, there
are subtle but important differences between simulation and
real domain. This leads to the so-called Sim-to-Real gap
which is the main barrier to transfer this technique to
real world robotic perception. Several works address this
gap by applying techniques such as Domain Randomization
(DR) [3], [6] and Domain Adaptation (DA) [4], [9] with
certain improvements. Yet, the unpredictable variability of
real-world scenes prevents a complete elimination of the
reality gap [10].

We encounter similar issues in our real lab environment,
when deploying an object detector [1] trained on photo-
realistic images on our robotic platform EDAN [11]. From
our practical experience, variables such as sensor characteris-
tics, illumination, or textures cannot be modeled to precisely
match the real environments. Even after a careful tuning of
DR, we find that the object detector fails to generalize well
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Fig. 1. Illustration of a practical problem. Deploying a detector
trained with only synthetic images on real-world scenarios leads to under-
performances. These inaccuracies (denoted by red crosses) such as false
positives are due to the Sim-to-Real gap and for this, a few informative real
images can improve the performance. Therefore, this work investigates the
question on how to collect such informative real images via active learning.

in the real-world scenario (e.g., clutter in lab environment
see Fig. 1). To overcome this, we applied domain-oriented
fine-tuning, by using real data of the underlying robotic
application, like [12]. Hence, based on our use-case, we
advocate that real data is indispensable for a robot to robustly
adapt from simulation to real world.

This however, comes with the requirement of tedious, time
consuming manual labeling. In this work, we investigate
on the question: How to bridge the Sim-to-Real gap with
minimum annotation efforts? Having a model trained on
synthetic images, we propose an Active Learning (AL)
pipeline that can efficiently bridge the still present Sim-to-
Real gap. In contrast to our previous work [13], we here aim
for autonomous acquisition of as few annotated real images
as possible. Based on a deep Bayesian Active Learning
(AL) framework [14], [15], we analyze different strategies to
select the most informative data samples. Further we devise a
simple yet effective strategy to mitigate the lack of diversity
in the selected data, caused by the label distribution shift
between simulation and real domain [16], [17]. Note, that
the latter is important for performance gain in AL under
domain shift (simulation vs. reality domain in our case) [18],
[19]. Moreover, for the more challenging 2D object detection
task, we suggest to incorporate regression uncertainty into
the selection process due to its multi-task characteristic
(including both classification (cls) and regression (reg)).

Concretely, we train a BNN with synthetic images, which
can be obtained from another task-relevant data set or gener-
ated by photo-realistic image synthesizers. In a second step, a



pool of task-specific real images are forwarded to the model.
According to the scores from the acquisition function and a
sampling strategy, a small subset of samples is selected and
solicited for human annotations. The labeled data is then used
to adapt the model. The aforementioned procedures can be
repeated iteratively until the desired performance is achieved.

Besides the empirical validation of the proposed idea on a
classification task, we then conduct evaluation on two more
challenging 2D object detection data sets, one with large
Sim-to-Real domain shift and another with less to show that
the proposed idea can help bridge the gap in a cost-effective
way, significantly better than the random baseline and com-
petitive against the state-of-the-art approaches. In addition,
we provide a failure case on a third object detection data set
to help identify the working scenarios of the proposed idea.
To demonstrate the practicality and effectiveness, we further
deploy the pipeline on our real robot and show a significantly
positive impact of the visual perception within grasping as
downstream task.

In summary, the main contributions of this work are:
• we propose to actively and efficiently close the Sim-

to-Real gap by applying a BNN in an Active Learning
(AL) framework.

• we introduce a simple yet effective sampling strategy
to mitigate the label distribution shift in Bayesian AL
under domain shift.

• we conduct experiments to empirically show the pos-
itive impact of the proposed pipeline on both object
classification and 2D object detection tasks, clearly out-
performing the random baseline and closely competing
against the state-of-the-art approaches

• we demonstrate the applicability in reducing labeling
efforts on a real robotic system.

Importantly, the accompanying video provides qualitative
results including the demonstration on an assistive robot. The
code of the implementation will be publicly available1.

II. RELATED WORK

a) Sim-to-Real Transfer: Sim-to-Real transfer is mainly
tackled with DR and DA. The former treats the real test
scenario as one instance of many synthetic ones generated
by randomizing the parameters of the synthesizer such as
materials, lightening, backgrounds, and plausible geometric
configurations [20], [21]. In contrast, DA focuses on learning
domain-invariant representations across the different domains
(e.g. synthetic and real domain in this context) by sometimes
including data of the target domain [4]. Though DA has
achieved impressive performance, as mentioned by different
researchers, when only relying on unlabeled data, the domain
gap is hard to diminish both in theory [9] and in practice
[22], [23]. Considering this issue, the paradigm of active
learning is appealing to address the reality gap by utilizing
annotated real data in an efficient way. In pool-set based
active learning [24], the aim is to reach certain level of per-
formance with as less data as possible. In case of supervised

1https://github.com/DLR-RM

learning, the data is selected based on their informativeness,
which can be measured by different quantities such as the
output uncertainty, the disagreement of a committee, or the
expected model change [25], [26]. We also stress that active
learning is complementary to the aforementioned techniques.
While recent works such as [18], [19] argue for the fusion
of DA and active learning to obtain better performance,
we additionally use DR in this work. Nevertheless, none
of them considers employing BNNs for this purpose and
most of them focus on classification tasks, which are less
relevant for the robots in the real world. Wen et al. [27] apply
BNNs for DA, but they only focus on conventional passive
learning paradigm and classification tasks. We aim to study
the active learning paradigm for Sim-to-Real transfer on a
more challenging real-world object detection task, which is
arguably more relevant for various use-cases of the robots.

b) Active Learning for Object Detection: In the con-
text of active learning for object detection, specific metrics
related to characteristics of the underlying network can be
applied [28]. While in [29] the margin of the bounding
box scores in different layers is used, Kao et al. [30]
consider the localization tightness and stability. Meanwhile,
uncertainty based approaches [19], [25], [31] are also able
to achieve competitive performances in the field of object
detection. Most of uncertainty based approaches are built
on BNNs [14], [32] which can produce more reliable un-
certainty estimates. Along with its theoretic soundness, the
task-agnostic characteristic of these approaches can facilitate
wider applicability for different fields. While some only
exploit the classification branch for the uncertainty esti-
mation [33], [34], others [15] consider both classification
and regression branches. Yet, they rely on larger amount of
annotated real world data to initialize the training of the
model and update the model in each iteration, while we
assume relatively small amount of real data.

III. PROBLEM FORMULATION AND OVERVIEW

We consider two domains: the simulation domain S and the
real domain R. In S, we assume the availability of annotated
data set, i.e., given the synthetic data xS and annotated labels
yS, we denote the synthetic data set as DS = {(xS

i ,y
S
i )}

NS
i=1

where NS is the number of data points. In contrary, R contains
an unlabeled data set DT = {(xR

i )}NR
i=1 which constitutes of NR

number of real images xR. We further extend the notations to
define an object detection task including classification (cls)
and regression (reg) tasks. Given the space of inputs X (both
synthetic and real images) and outputs Y (sets of object
classes c and their 2D location as bounding boxes b), we
define the object detector as a function Mθ : X → Y with
parameters θ . Naturally, our objective is to obtain an object
detector in the real domain R, for which synthetic data DS
can be exploited.

To achieve this goal, the proposed pipeline (depicted
in Fig. 2) relies on deep Bayesian AL. What motivates
our approach is that in practice, this so-called Sim-to-Real
transfer can be achieved by combining (a) the large amounts
of annotated synthetic data, and (b) a few but the most
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Fig. 2. The proposed Sim-to-Real pipeline. Using labeled synthetic
images, we first train an initial BNN object detector. Then, we rely on deep
Bayesian AL to select the most informative images from a pool of unlabeled
real images. The scoring of all the images in the pool is obtained via an
acquisition function, while sampling is applied to deal with the foreground
class imbalance problem. Based on the selected images, the human expert
performs the annotation and the detector is adapted via fine-tuning. The
process is repeated to close for Sim-to-Real transfer.

informative real images with annotations from human expert.
Importantly, we conjecture that the real images can bridge
the reality gap in a simple and effective manner, and thus,
this work focuses on reducing the amounts of needed real
images. For this, as shown in Fig. 2, (i) we use DS to train an
initial model with domain randomization. (ii) Then, treating
the unlabeled real data DT as a pool set Dpool , we rank the
informativeness of each images with an acquisition function
A (·) and then (iii) apply a sampling strategy to create the
subset. (iv) The labels of this subset is queried to a human
expert for manual annotation. This process can be repeated
for multiple times until the reality gap is diminished. Next,
we describe and motivate these steps in detail.

IV. THE PROPOSED PIPELINE

This section describes our pipeline of Sim-to-Real transfer
for 2D object detection. The main components are a BNN
object detector for uncertainty quantification (Sec. IV-A), and
deep Bayesian AL framework (Sec. IV-B).

A. Bayesian Neural Networks for Object Detection

We choose to model the object detector Mθ as a BNN, in
order to obtain its uncertainty estimates. BNNs achieve this
by reasoning about the model uncertainty, which indicates
what the model does not know. Reasoning about the model
uncertainty, the AL framework can later leverage this infor-
mation to label the most uncertainty data to the model itself.
To do so, given the training data Dtrain and a test data sample
x∗, BNNs produce the output distribution p(y∗ | x∗,Dtrain) by
marginalizing over the models’ distribution:

p(y∗ | x∗,Dtrain) =
∫

p(y∗ | x∗,θ)p(θ | Dtrain)dθ . (1)

In (1), p(y∗ | x∗,θ) is the observation likelihood, and p(θ |
Dtrain is the distribution over the weights θ . As a closed form
solution to the integral in (1) does not exist, the Monte-
Carlo integration is often used for a numerically solution
[35]. As a note, our AL pipeline uses both the synthetic and
the annotated real images as the training set Dtrain, and the
new images x∗ are samples from the pool set Dpool .

However, applying BNNs to the existing anchor-based
detectors such as Retinanet [1] requires several adaptations
[15], [33]. This is due to their post-processing steps, i.e.,
(i) miss-correspondence between the anchor predictions and
final outputs, and (ii) hard cut-off behavior in non-maximum
suppression (NMS) step. For these, the BayesOD framework
[15] can be used, which performs Monte-Carlo sampling
for each anchor prediction before NMS steps, and relies
on Bayesian inference to infer the output distributions.
Intuitively, BayesOD clusters outputs in anchor level using
spatial affinity. To explain, assume that such cluster contains
M anchors and consider the highest classification score as
center of this cluster (indexed by 1). The other outputs are
considered as measurements to provide information for the
center, denoted by ĉi and b̂i. By further denoting the final
predictive distributions for cls and reg of this cluster as
p[ĉ1,...,ĉM ](c|x∗,Dtrain) and as p[b̂1,...,b̂M ](b|x∗,Dtrain) respec-
tively, the final output distributions are computed as:

p[ĉ1,...,ĉM ](c|x∗,Dtrain)∝ pĉ1(c|x∗,Dtrain)
m

∏
i=2

p(ĉi|c,x∗,Dtrain),

p[b̂1,...,b̂M ](b|x∗,Dtrain)∝ pb̂1
(b|x∗,Dtrain)

m

∏
i=2

p(b̂i|b,x∗,Dtrain).

Here, pĉ1(c|x∗,Dtrain) represents the per-anchor
predictive distribution of the cluster center, while
∏m

i=2 p(b̂i|b,x∗,Dtrain) is the likelihood of each cluster
member given the output. When we choose the Gaussian and
Categorical distributions for cls and reg tasks respectively,
the sufficient statistics of them such as mean and covariance
matrix can be computed analytically. We refer more details
in [15] and next, we discuss the AL framework that relies
on the BayesOD framework.

B. Bayesian Active Learning for Sim-to-Real

With the uncertainty estimates of an object detector, the
AL pipeline needs to choose the images for annotation. This
selection of images is done via an acquisition function. More-
over, due to the domain shift between S and R, a sampling
strategy also needs to be devised to mitigate the bias in the
selected data set. We describe below these components and
our design choices.

1) Acquisition Function: We define the acquisition func-
tion based on the uncertainty estimates from the BNN de-
tector. In this step, the acquisition function is used to obtain
the informativeness scores for each detected instance on one
image, and then aggregated into one final score to represent
the informativeness of the entire image. Once the scores
are obtained for all the images in the pool set Dpool , we
sample a subset of them for annotation (IV-B.2) in order to



adapt the model. Specifically, we consider uncertainty from
both category classification and bounding box regression,
which are referred to as semantic and spatial uncertainty
respectively [36]. For the semantic uncertainty of the j-th
detection instance on an image, given the Shannon Entropy
measure H (·), the cls acquisition function U j,cls is modeled
with a Bernoulli distribution as:

U j,cls =
|C |
∑
i=1

H (p(ci|x∗,Dtrain)),

=
|C |
∑
i=1

[−p(ci|x∗,Dtrain) log p(ci|x∗,Dtrain)

− (1− p(ci|x∗,Dtrain)) log(1− p(ci|x∗,Dtrain))].

(2)

In (2), the steps follows from the definition of the entropy,
and optimizing the given measure is equivalent to maximiz-
ing the information gain [37] or information content.

The uncertainty from regression is defined as differential
entropy of p(b|x∗,Dtrain) which is approximated by a multi-
variate Gaussian with covariance matrix Cb calculated from
the samples of predicted bounding boxes:

U j,reg = H (p(b|x∗,Dtrain))

=
k
2
+

k
2

ln(2π)+
1
2

ln(|Cb|),
(3)

where k is the dimensionality of random variable b. Again,
this regression acquisition function U j,reg follows from the
definition of entropy for Gaussian distributions, and repre-
sents the information content of an image.

We choose to exploit these two quantities by a combina-
tion function comb(·), in order to produce the uncertainty
score for each of Nk detected instance on k-th image. Then,
the acquisition function for k-th image A is defined by
aggregating scores with a function agg(·) denoted by:

A (xk) = agg j∈Nk(comb(U j,cls,U j,reg)), (4)

The combination function comb(·) can be a weighted sum
(sum) or maximum (max) operation [31]. The aggregation
function agg(·) can be a maximum (max), summation (sum)
or average (avg) operation [29]. What motivates this is the
problem itself, i.e. object detection involves both cls and reg
tasks and multiple instances in one image.

selected points data points from poolclasses...

(a) naive ranking (b) ranking after sub-sampling 

Fig. 3. Sub-sampling Strategy. We illustrate the ranking after sub-
sampling strategy. A naive ranking selects the most informative points from
a few classes of pool data, while the ranking after sub-sampling enables
to evenly select the most informative points across the variety of classes.
This mitigates the class imbalance problem of AL for object detection, and
introduced diversity can improve the performance.

2) Sampling Strategy: One problem in the naive TopN
sampling motivates us to combine the TopN sampling with
the popular sub-sampling technique [38]. The problem is the
violation of the assumption that the simulation domain S and
the real one R are the same, which does not hold in fact. This
will further lead to a performance degradation for both AL
and object detection training [39], [40]. More specific, to
select the B most informative images scored based on the
model trained on S will result in an imbalance problem in
the selected data set. Since the algorithm queries only images
from real domain R, we attribute the under-performance
during AL to the label distribution shift [16]. To explain, we
denote the distribution followed by sub-sampling as Pss(c,
b) and the distribution followed by uncertainty sampling as
Punc(A (c,b)), which can be a product of delta distribution
with probability mass placed at the top B scored predictions.
Therefore, the selected data during AL follow the a label
distribution PssPunc. Additionally, we use Pr(c, b) for the
real label distribution, which is assumed to be uniform. The
goal is to adapt the model with data points drawn from Pr,
which is unavailable for unlabeled data. Instead we adapt the
model with data points drawn from PssPunc, which ideally
should be aligned with Pr. Unlike classification case, in
which the label distribution lies in a discrete finite space and
importance weighting correction [17] can be easily adapted,
the label space for object detection is more complex when
there is an additional regression task involved. The trade-off
between alleviation of label distribution shift and utilization
of information contained in the uncertainty estimates is thus
determined by the distribution form of Pss and the amount
of data to be sub-sampled. Intuitively, by assuming there
is certain degree of redundancy in the data set, we select
the uniform distribution for Pss, which works empirically
well, shown in the experiments. In practice, the pool set
data is filtered by Pss first, and then with Punc, the learner
thus can choose by considering the informativeness in the
sub-sampled data. An illustrative explanation on the class
imbalance problem, one instance of label distribution shift,
is shown in Fig. 3.

V. EXPERIMENT

In this section, we first validate the proposed sampling
strategy on a classification task, in which the model is
transferred from MNIST [41] to MSNIST-M [42]. Then we
move on to two more challenging but task-relevant self-
collected data-sets on 2D object detection. To note that, we
employ two data-sets with different magnitudes of Sim-to-
Real gap (one is large and the other small) to demonstrate
that the proposed pipeline can efficiently bridge the gap for
both cases. In all experiments, we instantiate the Sim-to-Real
gap by subtracting the performance of the corresponding
models trained on purely the real and simulated data-set.
Nevertheless, we address the limitation of the proposed idea
by including one failure case on the public YCBV data
set [43] to further identify the operational scenario. In the
end, we show the practical effectiveness of our idea by
deploying the model on an assistive robot within a grasping



Fig. 4. The real and synthetic data. Exemplary images from real (1st,3rd
row) and synthetic domain (2nd, 4th row) of EDAN (1-2 rows) and YCBV
(3-4 rows) data sets.

task. The implementation details and parameter settings of
the proposed pipeline are then provided, which is followed
by results and discussions.

a) Data sets: (1) Digits include MNIST and MNIST-
M digit data sets with 10 classes. MNIST-M contains digits
from MNIST but blended with random color patches. We
can treat MNIST-M as MNIST digits in real-world in this
case and perform Sim-to-Real transfer for them. (2) EDAN
includes 5 classes: ikea bottle, watering can, door handle,
drawer handle and grey mug. With simple textures and
geometry of the objects and the indoors lab environments
(see Fig. 4), the domain gap on this data set is small. (3)
SAM [44] includes 3 classes: cage, pipe and hook. With
more complex textures and geometry of the objects and
different weather conditions in outdoor environments, the
domain gap on this data set is much larger than EDAN. (4)
YCBV contains images of 21 classes from common objects
such as pitcher, sugar box and so on. Basic information of
the aforementioned data sets is summarized in Table I and
the synthetic data sets except for the one of 1 are generated
by BlenderProc [7] with domain randomization applied.

TABLE I
BASIC INFORMATION AND TRAINING HYPER-PARAMETERS ON FOUR

DATA SETS

Data set (size of
sim, real-pool, real-
val, real-test set,
number of class)

Query
Size
(image)

Maximum
Training
Period
during AL
(epoch)

Learning
Rate

Network
Archi-
tecture

Digits data set (60k,
55k, 5k, 10k, 10)

20 50 linearly
from 1e−5

to 1e−3

the same
CNN in
[26]

EDAN (10k, 0.5k,
0.1k, 1k, 5)

20 10 1e−4 RetinaNet
[1]

SAM (2.5k, 2k,
0.1k, 0.5k, 3)

80 10 1e−4 RetinaNet
[1]

YCBV (50k, 1.4k,
0.1k, 0.5k, 21)

50 10 1e−3 RetinaNet
[1]

TABLE II
COMPARISON OF DIFFERENT ACQUISITION FUNCTIONS: MEAN MAP

OVER 10 ITERATIONS FOR DIFFERENT AGGREGATION AND

COMBINATION FUNCTIONS WITH AND WITHOUT SUB-SAMPLING

STRATEGY AND WITH 10 AND 30 SAMPLES ON EDAN DATA SET.
10 samples 30 samples

Agg. Comb. w.o. sub. w. sub. w.o. sub. w. sub.

Avg Max 74.73% 76.51% 74.47% 76.76%
Sum 74.77% 77.09% 75.17% 77.19%

Sum Max 75.80% 74.54% 76.08% 76.76%
Sum 71.83% 75.35% 74.31% 76.67%

Max Max 73.67% 72.67% 73.02% 74.74%
Sum 75.36% 76.89% 74.98% 77.49%

b) Baselines: In order to validate the proposed idea,
we compare with the following baselines. (1) Random: an
approach to randomly select data points for query in each
iteration. (2) Batch-bald [26]: an approach to query a batch
of data with jointly maximum mutual information instead of
individually. (3) Clue [19]: an approach for active domain
adaptation that considers both diversity and uncertainty in the
acquisition function. (4) Coreset [45]: a diversity-oriented
approach for AL, whose greedy version is a k-center algo-
rithm. For clue2 and batch-batch3, we use the open-sourced
implementation and only apply to 1 with max aggregation
function due to their iterative calculation characteristic. For
efficiency within coreset and clue, we use the logits layer as
latent features.

c) Implementation details: Training hyper-parameters
are summarized in Table I. Within the sum combination
function, we set the weight of 1 to 1 on all data sets. For
regression, we select 0.01 for EDAN and SAM, 0.001 for
YCBV. The percentage of sub-sampling is set to 1% for dig-
its data sets and 50% for the others based on the performance
on validation set. We set dropout rate to 0.1 in BayesOD and
apply Bayesian inference only for bounding box regression
instead of both heads to avoid under-performance observed in
preliminary experiments. We use 100 Monte-Carlo samples
to approximate the joint distribution in batch-bald. Regarding
the evaluation metric, following the convention in [19], we
employ the mean accuracies for classification and mean MAP
for object detection over AL iterations.

A. Results and Analysis

a) Design choices: We firstly conduct an initial em-
pirical study on the effects of aggregation and combination
functions in Eq. (4), number of samples to approximate Eq.
(1) on EDAN data set (Table II). We can observe: 1. More
weight posterior samples can lead to slightly better results;

2. The sub-sampling strategy can improve performance
most of the cases; 3. When using avg and max to ag-
gregate uncertainties of detections on the image, the sum
combination function yields better results; Only within sum
aggregation function, the max operation outperforms.

In general, the setting pairs of max+ sum and avg+ sum
provide the best results. As this ablates our design choices,

2https://github.com/virajprabhu/CLUE
3https://github.com/BlackHC/BatchBALD
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Fig. 5. Results on digits data sets (MNIST → MNIST-M). Active
learning learning curves of 3 random runs (with 50 iterations and 20 images
queried in each iteration). The black and purple dotted lines represent
the performance ( on MNIST-M test set) of model trained on MNIST
and MNIST-M training set with size in the parentheses, respectively.
The compared methods include the proposed one (entropy ss) and other
baselines. Values in the parentheses are mean accuracies over 50 iterations.

TABLE III
RESULTS SUMMARY FOR OBJECT DETECTION DATA SETS. VALUES IN

THIS TABLE ARE 1. PERCENTAGE OF ANNOTATED IMAGES REQUIRED

TO BRIDGE SIM-TO-REAL GAP (LOWER THE BETTER) AND 2. MEAN

MAP OVER 10 ITERATIONS WITHIN AL (HIGHER THE BETTER).
Random Proposed Coreset Clue Batch-

bald
EDAN > 40% /

75.7%
36% /
77.1%

> 40% /
75.0%

> 40% /
75.7%

> 40% /
72.9%

SAM > 40% /
81.4%

32% /
82.2%

20% /
85.6%

32% /
85.0%

> 40% /
82.0%

YCBV 40% /
65.2%

> 40% /
63.5%

> 40% /
61.1%

40% /
65.2%

> 40% /
64.8%

we use this insight and mainly focus on these two settings
with 10 samples and report only the one with better results.

b) Results on digits data sets: In Fig. 5, we can see
that the domain gap can be bridged with ∼ 2% data by
the proposed sub-sampling strategy (entropy ss), faster and
better than the random and clue baseline. In contrast, the
naive entropy and batch bald perform worse than random
along with large variations. This shows that the proposed
sampling strategy for mitigating distribution shift in AL
is able to provide greater performance gain than the one
considering trade-off between uncertainty and diveristy.

c) Results on EDAN data set: In Fig. 6 and Table III,
we can learn that the gap can be eliminated by the proposed
method with avg to aggregate detections and sum to combine
cls and reg uncertainties(avg sum ss) with only 36% data,
outperforming both the strong baseline random and clue. In
contrary, while clue is on a pair with random and slightly
better than coreset, batch bald has the lowest mean mAP.
This demonstrates that utilization of information from both
cls and reg with sub-sampling is advantageous in the case
of data set with moderate distribution shift like EDAN.

d) Results on SAM data set: The final detector on
this data set can achieve a quite decent mAP (> 90%),
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Active learning curves on EDAN data set

real only (~0.5k)
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Fig. 6. Results on the EDAN data set. Active learning curves of 3 random
runs (with 10 iterations and 20 images queried in each iteration). The black
and purple dotted lines represent the performance of model trained on sim
and real data sets with size in the parentheses, respectively. The compared
methods include the proposed one (avg sum ss) and other baselines. Values
in the parentheses are mean mAP over 10 iterations.
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Active learning curves on SAM data set

real only (~2k)
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random(81.36%)
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cls_batch_bald(82.01%)
cls_coreset(85.64%)
cls_clue(85.01%)

Fig. 7. Results on the SAM data set. Active learning curves of 3 random
runs (with 10 iterations and 80 images queried in each iteration). The black
and purple dotted lines represent the performance of model trained on sim
and real data sets with size in the parentheses, respectively. The compared
methods include the proposed one (max sum ss) and other baselines. Values
in the parentheses are mean mAP over 10 iterations.

therefore in this experiment we aim to bridge the gap up to a
sufficient level, which is 95% of gap. In Fig. 7 and and Table
III, the proposed method with max as aggregation and sum
as combination function followed by sub-sampling strategy
(max sum ss) is still able to beat the strong random baseline
as well as batch bald and diminish the gap. Nevertheless,
clue and coreset perform better than max sum ss probably
due to the larger domain gap on this data set. It could
attribute to the reason that our proposed sampling strategy
aims to compensate the shift in label distribution, thereby
less effective for a large shift in the input distribution.

e) Limitation Analysis: In this sub-section, we show a
failure case on YCBV data set to demonstrate the limitation
of the proposed idea. With this, we aim to identify the



operational scenarios of AL for Sim-to-Real transfer and
highlight the characteristic of this problem with the hope
of providing some enlightening thoughts for the community.

In the last row of Table III, we see that all approaches
are on a par with (clue) or worse than (avg sum ss, coreset,
batch bald) the random baseline. To investigate the reason
behind, inspired by [39], we compute the average inter class
variations over AL iterations in Table IV. The inter class
variation is defined as the σ ×C, where C is the number of
class and σ is the standard deviation of number of instances
for all classes. The lower this value is, less variations and
more balance the object category distribution possesses.
We can quantitatively observe that variations of YCBV are
significantly larger than the others due to greater number of
class, which might pose greater difficulty on decreasing the
label distribution shift. Further from row-wise comparison,
there is an obvious inversely proportional relation between
inter class variations and the performance on YCBV, which
is obscure on EDAN and SAM. Therefore, we infer that the
impact of label distribution shift is more severe on data sets
with greater number of class, thus impeding the effective
utilization of uncertainty estimates. Considering this, we
suggest that it is more effective to employ the proposed
pipeline for bridging the reality gap when the class imbalance
problem, one instance of label distribution shift for object
detection problem, is at a small scale.

TABLE IV
INTER CLASS VARIATIONS FOR THE SELECTED DATA SET IN EACH

ITERATION DURING ACTIVE LEARNING. LOWER THE BETTER.

Random Sub-
sampling

Core-set Clue Batch-
bald

EDAN 90 152 78 114 126
SAM 81.3 39.9 71.8 75.3 12.6
YCBV 268 316 305 268 318

B. Deployment on EDAN

On account of the working scenarios (e.g. care-giving)
for an assistive robot [11], a variety of objects need to
be detected and the manual efforts required for adaptation
must be kept as minimum as possible. Therefore, we show
the effectiveness of the proposed idea in a shared-control
grasping task on EDAN (Fig. 8), where a user such as
people with motor disability sitting on the chair intends to
control the robot arm for tasks like pouring by using an input
device (EMG signal sensors or a spacemouse (used in demo))
with lower degrees of freedom (DoFs) than that of the end
effector (3 vs. 6). The mis-correspondence of DoFs between
the input device and the manipulator demands that the user
needs to tediously switch input mapping between them for
task completion in a pure manual control mode. In order
to ease task execution, we employ shared-control templates
[46], which require robust and precise 2D object detection
and pose estimation. For more details on how to incorporate
the perception pipeline into the shared-control module, we
refer readers to the original work [46].

Fig. 8. Exemplary screenshots of a pouring task via shared control on
an assistive robot. The two screenshots on the top show the performance
of the detector and the corresponding pose estimates (visualized in Rviz)
before (left in each column) and after (right in each column) adaptation via
the proposed pipeline. The two screenshots at the bottom show the sequence
of a grasping and pouring task execution with shared-control [11].

In this demo, we integrate the adapted detector trained
with a similar setting introduced in the previous section and
further use the Agumented autoencoder (AAE) and Iterative
Closest Point (ICP) pipeline [3] for accurate pose estimation.
This perception pipeline can be deployed on an embedding
system such as a NVIDIA Jetson TX2 or a workstation PC
(used in demo), the predictions (i.e. pose estimates of the
detected objects) are then sent to the shared-control module
via Links and Nodes (LN) middle-ware. Based on this, the
user is able to control the manipulator to perform a series
of common daily tasks such as pouring and drinking with
much less cognitive workload. We also provide a video to
showcase the deployment.

VI. CONCLUSION

This paper presents an active Sim-to-Real pipeline for 2D
object detection, in which, a model is initially learned from
synthetic data. Having observed the sub-optimal performance
of learning only from simulation, we propose to efficiently
use real annotated data via exploiting deep Bayesian ac-
tive learning. Empirically, we demonstrate the encouraging
impact of the proposed pipeline on classification and 2D
object detection data sets, further address the limitation
of the proposed pipeline and show its applicability on a
real robotic system. In particular, our experiments indicate
that the proposed sampling strategy can alleviate the label
distribution shift which can have a vital impact on the
success of our pipeline. More importantly, our work provides
an empirical evidence that the real annotated images can
efficiently reduce the reality gap.
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