Feng, Jianxiang und Lee, Jongseok und Durner, Maximilian und Triebel, Rudolph (2022) Bayesian Active Learning for Sim-to-Real Robotic Perception. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022-10-23 - 2022-10-27, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9982175. ISBN 978-166547927-1. ISSN 2153-0858.
Dies ist die aktuellste Version dieses Eintrags.
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9982175
Kurzfassung
While learning from synthetic training data has recently gained an increased attention, in real-world robotic applications, there are still performance deficiencies due to the so-called Sim-to-Real gap. In practice, this gap is hard to resolve with only synthetic data. Therefore, we focus on an efficient acquisition of real data within a Sim-to-Real learning pipeline. Concretely, we employ deep Bayesian active learning to minimize manual annotation efforts and devise an autonomous learning paradigm to select the data that is considered useful for the human expert to annotate. To achieve this, a Bayesian Neural Network (BNN) object detector providing reliable un- certainty estimates is adapted to infer the informativeness of the unlabeled data. Furthermore, to cope with misalignments of the label distribution in uncertainty-based sampling, we develop an effective randomized sampling strategy that performs favorably compared to other complex alternatives. In our experiments on object classification and detection, we show benefits of our approach and provide evidence that labeling efforts can be reduced significantly. Finally, we demonstrate the practical effectiveness of this idea in a grasping task on an assistive robot.
elib-URL des Eintrags: | https://elib.dlr.de/188495/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Bayesian Active Learning for Sim-to-Real Robotic Perception | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9982175 | ||||||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Active Learning, Sim-to-Real, Robotic Perception | ||||||||||||||||||||
Veranstaltungstitel: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems | ||||||||||||||||||||
Veranstaltungsort: | Kyoto, Japan | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 23 Oktober 2022 | ||||||||||||||||||||
Veranstaltungsende: | 27 Oktober 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
Hinterlegt von: | Feng, Jianxiang | ||||||||||||||||||||
Hinterlegt am: | 05 Dez 2022 12:16 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:49 |
Verfügbare Versionen dieses Eintrags
- Bayesian Active Learning for Sim-to-Real Robotic Perception. (deposited 05 Dez 2022 12:16) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags