Koller, Christoph and Shahzad, Muhammad and Zhu, Xiao Xiang (2022) Uncertainty-Guided Representation Learning in Local Climate Zone Classification. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 183-186. IEEE. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883897.
PDF
465kB |
Official URL: https://ieeexplore.ieee.org/document/9883897
Abstract
A significant leap forward in the performance of remote sensing models can be attributed to recent advances in machine and deep learning. Large data sets particularly benefit from deep learning models, which often comprise millions of parameters. On which part of the data a machine learner focuses on during learning, however, remains an open research question. With the aid of a notion of label uncertainty, we try to address this question in local climate zone (LCZ) classification. Using a deep network as a feature extractor, we identify data samples that are seemingly easy or hard to classify for the model and base our experiments on the relatively more uncertain samples. For training of the network, we make use of distributional (probabilistic) labels to incorporate the voter confusion directly into the training process. The effectiveness of the proposed uncertainty-guided representation learning is shown in context of active learning framework where we show that adding more certain data to the training pool increases model performance even with the limited data.
Item URL in elib: | https://elib.dlr.de/188395/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Uncertainty-Guided Representation Learning in Local Climate Zone Classification | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883897 | ||||||||||||||||
Page Range: | pp. 183-186 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Local Climate Zones (LCZ), Classification, Uncertainty Quantification, Representation Learning, Urban Land Cover | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Koller, Christoph | ||||||||||||||||
Deposited On: | 26 Sep 2022 14:06 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:49 |
Repository Staff Only: item control page