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ABSTRACT

A significant leap forward in the performance of remote
sensing models can be attributed to recent advances in ma-
chine and deep learning. Large data sets particularly benefit
from deep learning models, which often comprise millions of
parameters. On which part of the data a machine learner fo-
cuses on during learning, however, remains an open research
question. With the aid of a notion of label uncertainty, we try
to address this question in local climate zone (LCZ) classifica-
tion. Using a deep network as a feature extractor, we identify
data samples that are seemingly easy or hard to classify for
the model and base our experiments on the relatively more
uncertain samples. For training of the network, we make use
of distributional (probabilistic) labels to incorporate the voter
confusion directly into the training process. The effective-
ness of the proposed uncertainty-guided representation learn-
ing is shown in context of active learning framework where
we show that adding more certain data to the training pool
increases model performance even with the limited data.

Index Terms— Local Climate Zones (LCZ), Classifi-
cation, Uncertainty Quantification, Representation Learning,
Urban Land Cover

1. INTRODUCTION

Significant performance improvements in remote sensing
models result from computational advances associated with
models of unprecedented capacity with an ever-growing num-
ber of model parameters. In a supervised learning setting,
this combination flourishes especially when the data set be-
ing modeled is large as well. Yet what the model usually does
not tell us is which part of the labelled data is particularly
important in boosting the performance. As part of this work,
we look at this issue from an uncertainty quantification per-
spective. We claim that when a notion of label uncertainty for
each data point is available (or extracted from the data itself),
the model would benefit more when learning from data points
with a higher uncertainty value.

To validate the above hypothesis, we analyzed the feature
representations learned by a deep neural network within the
task of classifying satellite images into local climate zones.

A notion of uncertainty is established on the grounds of dis-
tance (or similarity) measures to different class-wise focal
points. The smaller the distance to the focal point in the
high-dimensional feature representation space, the lower the
induced measure of uncertainty. The aspect of human un-
certainty in the labeling process is considered by directly em-
bedding the voter confusion between different classes into the
class labels used for training. The effectiveness of the pro-
posed uncertainty quantification procedure is validated both
visually and by implementing it into an active learning frame-
work.

2. RELATED WORK

Local Climate Zone Classification describes the task of clas-
sifying the scene on the Earth’s surface into a predefined
scheme of climate zones – a popular scheme presented in
Stewart et al. [1] that consists of 17 classes of which 10
are urban-related classes and 7 are non-urban-related. Early
works of applying this scheme focused on e.g. Urban Heat
Islands (UHIs) [2] or urban planning [3]. Recently, Zhu et
al. [4] introduced a large-scale benchmark data set to the
community, consisting of more than 400,000 Sentinel-1 and
Sentinel-2 image patch pairs that were manually labeled in
a labor-intensive process. Various works have since then fo-
cused on e.g. benchmarking the data set with various neural
network architectures [5] or combining the labels of the data
set with multi-seasonal Sentinel-2 data [6].

Uncertainty Quantification (UQ) in Deep Learning is
a relatively new field in the Earth Observation community
which helps to shine some light on the often termed Black-
Box-models used in machine and deep learning by quantifying
possible data and model uncertainties. A general research di-
rection in this domain includes using ensembles of models to
receive multiple predictions and derive uncertainties in terms
of deviations [7], which has been successfully applied in the
remote sensing area [8] [9]. Furthermore, models based on
Bayesian reasoning have been established and UQ based on
this framework has been implemented recently with the aid of
dropout networks [10]. The method is widely used, although
the application to remote sensing data is yet limited [11].
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Representation Learning focuses on learning interme-
diate features or representations of data within a modeling
pipeline. These features ideally embody rich information
about the underlying data and can help downstream models
to better predict on it. In [12], the authors explored various
remote sensing data sets in order to find good representations
for data of this domain. On the other hand, the method was
also used by [13] to find representations which are domain-
invariant, hence overcome the domain shift typically occur-
ring between the training and test data. The list of possible
downstream tasks is extensive and includes for example scene
classification [14] or change detection [15].

3. METHODOLOGY

3.1. Data

The data basis of the following analyses is formed by the
So2Sat LCZ42 data set [4]. The included image patches come
from 42 cities as well as 10 add-on regions all over the world.
Each of the patches is of size 32 × 32 pixels, corresponding
to an area of 320m × 320m. 18 different channels are avail-
able, including 8 Sentinel-1 channels as well as 10 Sentinel-2
channels of which 4 have a ground sampling distance (GSD)
of 10m. The other 6 channels were upsampled from a GSD
of 20m to match the other channels. For this work, only
Sentinel-2 data is considered. For a subset of 10 European
cities as well as 9 add-on regions within the LCZ42 cities, the
labeling process was further evaluated by asking 10 remote
sensing experts to blindly relabel the data independently. This
data consists of ca. 250,000 image patches, again including
Sentinel-1 and Sentinel-2 bands. For the corresponding label,
there exist both a ground truth formed by the majority vote
of the expert votes (the original LCZ42 label is additionally
considered when there exists a tie between two classes) and
a label distribution across all classes formed by the empirical
distribution of the expert votes.

3.2. Learning Distributional Labels

Let us denote the climate zones classification data by
{x(i), y(i), y

(i)
true}i=1,...,n ∈ (X × Y × K)n, where

x(1), . . . , x(n) ∈ X are the LCZ42 image patches comprised
of 10 Sentinel-2 bands and y(1), . . . , y(n) ∈ Y are the label
distributions formed by the expert votes. Furthermore, we de-
note y

(i)
true ∈ K as the single one-hot encoded ground truth

label of image i formed by the majority vote of the expert
votes. For the distributions, we follow the idea and notation
firstly introduced in [16]. More concretely, for image i define
the distributional label via

y(i) = (y
(i)
1 , . . . , y

(i)
K ) , y

(i)
j ∈ [0, 1]

s.t.
∑
j

y
(i)
j = 1 ∀ i = 1, . . . , n

where K = 17 denotes the number of distinct classes (i.e.
local climate zones) and y

(i)
j expresses the degree of which

image i is attributable to class j. For the given expert votes
V

(i)
1 , . . . , V

(i)
J , V

(i)
j ∈ {1, . . . ,K} ∀i = 1, . . . , n from

experts j = 1, . . . , J regarding image i, we have V
(i)
j =

(1{V (i)
j =1}, . . . ,1{V (i)

j =K}). This then allows to infer the
vote vectors via

Y (i) = (Y
(i)
1 , ..., Y

(i)
K ) , Y

(i)
k =

∑
j

1{V (i)
j =k}

Here, Y (i)
k = m means that class k received m votes for im-

age i and it holds that
∑K

k=1 Y
(i)
k = M , where M = 10

represents the number of experts. We can now redefine the
majority vote via taking the maximum over Y (i) for image i
and encoding it in a one-hot manner. Eventually, we combine
the J = 10 expert votes to form the aforementioned distri-
butional label via the empirical distribution over the different
classes. For image i, this leads to

y(i) =
1

M

∑
j

Y
(i)
j (1)

Let further be fθ(x) := gθ1 ◦ hθ2(x) a neural network
classifier which yields the logits (unnormalized class esti-
mates) for the input x ∈ X , dependant on the parameter sets
θ1 and θ2. Here hθ2(x) describes the deep inherent feature
representation of the network given input x ∈ X (namely
the output of the penultimate layer), and fθ(x) describes the
mapping of this representation into the label space, therefore
gθ1 : RL → RK , where L is the dimension of the learned
deep representation. Training the network is performed in the
usual manner by backpropagating the loss through the net-
work. We use the widely-known cross-entropy loss, however
now considering the distributional nature of the labels. For a
batch of data {x(i), y(i)}i=1,...,,m the loss is then computed
via

LCE(fθ, x
(1), . . . , x(m), y(i), . . . , y(m), θ1, θ2)

= − 1

m

m∑
i=1

K∑
k=1

y
(i)
k · log p(y(i)|x(i), θ1, θ2)k

where the predictive distribution p(y(i)|x(i), θ1, θ2) is formed
via the softmax activation as usual.

3.3. Distance Measures for Deep Representations

During training, not only the prediction p(y|x, θ1, θ2) but
implicitly also the deep representation hθ2(x) get optimized
with regard to the loss. The latter yet is of a lot higher di-
mension and allows thus for better separation of the different
classes. This motivates the idea of this work to use these rep-
resentations to filter the data in terms of model certainty. To
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(a) 5% most certain samples (b) 10% most certain samples (c) 20% most certain samples (d) 30% most certain samples

Fig. 1: TSNE visualization of the 2048d deep features learned by a ResNet50. The model was pretrained on ImageNet and
finetuned on LCZ42 with distributional labels. The distances of the data points to their respective geometric class medians were
sorted and only the subset samples are shown in the TSNE plots.

do so, let us first define the set of all points having the same
ground truth label, to be

S(X)k :=
{
{x(j)}mj=1 : {x(i), y(i), y

(i)
true}ni=1 ∈ (X × Y ×K)n

∧y(i)true = k
}

for k ∈ K, X ⊂ X

Then, using the aggregation function Ψ(·) we can form class-
specific focal points, which are derived based on the inputs
x(j) belonging to a certain class k. More concretely, we aim to
find the class-wise centers of mass or the geometric medians
of the deep feature representations. This leads us to

Ψk(X) = Ψ
(
hθ2(S(X)k)

)
where Ψ(·) is now taken to be the geometric median, which
is defined via

argmin
ck∈RK

mk∑
j=1

||s(j)k − ck||2 where s(j)k ∈ S(X)k (2)

Here, mk denotes the number of samples with ground truth
class k. From this center of mass, we can treat the distance to
the individual points as notion of uncertainty. Hence, points
further away from the center are equipped with a higher quan-
tity of uncertainty based on their deep feature representations
learned by the neural network.

4. EXPERIMENTAL RESULTS & VALIDATION

To validate our approach, we employed ResNet50 architec-
ture as feature extractor, which was pretrained on ImageNet
and later fine-tuned on the LCZ42 data until convergence, us-
ing the distributional labels defined via (1) to account for the
label uncertainty. A geographically separated validation set is
used; the test set is a subset of the validation set and is held
out. Note that we excluded the LCZ 17 (water), because it ac-
counts for more than 40% of the data, hence leads to a large
class imbalance, and contains no label uncertainty, which is
unsuitable for the present modeling technique. After training,

we extracted the learned deep features hθ2(xj) , xj ∈ Xtrain
and computed the geometric class medians according to (2)
using the Weiszfeld algorithm.

Once determined, the euclidean distances between the
feature representations of all training points and the respec-
tive derived geometric class medians are calculated. These
distances are said to reflect the uncertainty of the model
when classifying the image samples into the predefined LCZ
classes. To validate the usefulness of these distances, we re-
fer to Figure 1 which shows exemplary t-distributed stochas-
tic neighbor embedding (TSNE) visualizations with different
thresholds for the distances of the individual points to their
respective geometric class medians. Though some classes
are over-represented when setting a global threshold for the
distance to the class median, we can see that the class clus-
ters grow more or less equally. We use this idea and frame
the whole problem in the context of active learning where we
use the identical ResNet50 architecture, again pre-trained on
ImageNet, with different subsets of the training data selected
based on their distance to the respective class medians. The
subsetting is considered in two different ways: Both a global
threshold for the distances, as well as in stratified manner, the
latter assures that each class is represented equally. The mod-
els are hence relying on the most certain or uncertain data
points during training, where the notion of uncertainty is de-
fined via the distances in the high-dimensional feature rep-
resentation space. All models are evaluated on the identical
hold-out test set, and the resulting performance metrics are
presented and compared against a random subset of the data
matching the respective size of the subset in Table 1.

A straightforward message is delivered by the models
trained on a random (R) subset of the initial training data, as
they already achieve performance metrics close to the maxi-
mum achievable value (using the same architecture, an over-
all accuracy of ∼71 % was achieved when using the entire
training data set). This indicates a large present redundancy
in the data set. The other extreme is visible when looking at
the uncertainty threshold models, which perform comparably
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OA AA κ CE
R / UT / UTS (5 %) 66.2 / 60.1 / 58.5 31.3 / 20.9 / 23.6 56.7 / 46.1 / 47.9 1.39 / 1.61 / 1.44

R / UT / UTS (10 %) 62.9 / 63.5 / 61.2 27.7 / 24.0 / 27.0 52.9 / 51.6 / 51.8 1.37 / 1.47 / 1.33

R / UT / UTS (15 %) 65.8 / 64.9 / 61.4 31.1 / 24.4 / 26.8 56.3 / 53.9 / 51.7 1.25 / 1.35 / 1.31

R / UT / UTS (20 %) 67.8 / 66.0 / 65.5 32.4 / 26.1 / 31.7 58.9 / 55.7 / 56.9 1.20 / 1.31 / 1.26

R / UT / UTS (30 %) 68.0 / 65.4 / 68.0 34.3 / 27.3 / 34.8 59.2 / 55.0 / 59.7 1.20 / 1.21 / 1.17

Table 1: Performance metrics on hold-out test set (R = random subsets, UT = uncertainty threshold & UTS = stratified uncer-
tainty threshold, both based on most uncertain samples). The metrics are overall accuracy (OA), average accuracy (AA), Kappa
score (κ), and cross-entropy (CE), shown as averages over 3 independent runs. Further performance metrics showed similar
trends. The results validate the hypothesis that the most ”uncertain” samples extracted by the proposed uncertainty-guided
representation learning approach induce more diversity during training, and hence makes the trained model more generic.

badly for small subset sizes. This behavior can be partially
explained by the large class imbalance present in the train-
ing data set, and by the fact that some classes might overall
come with smaller label uncertainty, both resulting in an un-
balanced training data subset. Note that for larger subsets,
the uncertainty-based models are able to overtake the random
models in some performance metrics.

5. CONCLUDING REMARKS

In the context of LCZ classification, the So2Sat LCZ42 data
set is studied, particularly a subset of European cities for
which a label distribution exists. For a sufficiently large data
set size, models focusing on data with higher uncertainty val-
ues seem to generalize better to the unseen test data. We ex-
plain this phenomenon by the richer informativeness of un-
certain samples to the model. As an outlook, we would like
to focus future work on transferring these findings to feature
extraction models that are trained on different data, allow-
ing for an a priori uncertainty assessment of the training data
set. This would enable to sort out redundant or certain data
samples and empower the model to focus on challenging but
informative subsets of the data.
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