Xiong, Zhitong and Zhu, Xiao Xiang (2022) Knowledge Transfer for Label-efficient Monocular Height Estimation. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5377-5380. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883240.
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/document/9883240
Abstract
Estimating height from monocular remote sensing images is one of the most efficient ways for building large-scale 3D city models. However, existing deep learning based methods usually require a large amount of training data, which could be cost-consuming or even not possible to obtain. Towards a label-efficient deep learning model, we propose a new task and dataset for weak-shot monocular height estimation. In this task, only the relative height labels between pairs of a small portion of points are given, which is cheaper and more friendly for humans to annotate. In addition, to enhance the model performance under the sparse and weak-shot supervision, we propose a Transformer-based network for transferring the learned knowledge from a large-scale synthetic dataset to real-world data. Experimental results have shown the effectiveness of the proposed method on a public dataset under the sparse and weak supervision.
Item URL in elib: | https://elib.dlr.de/187207/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||
Title: | Knowledge Transfer for Label-efficient Monocular Height Estimation | ||||||||||||
Authors: |
| ||||||||||||
Date: | 2022 | ||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883240 | ||||||||||||
Page Range: | pp. 5377-5380 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | artificial intelligence in Earth Observation, AI, artificial intelligence, deep learning, Earth Observation, knowledge transfer, building height | ||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||
Organizer: | IEEE | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||
Deposited By: | Beuchert, Tobias | ||||||||||||
Deposited On: | 06 Jul 2022 13:50 | ||||||||||||
Last Modified: | 24 Apr 2024 20:48 |
Repository Staff Only: item control page