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ABSTRACT

Estimating height from monocular remote sensing images is
one of the most efficient ways for building large-scale 3D city
models. However, existing deep learning based methods usu-
ally require a large amount of training data, which could be
cost-consuming or even not possible to obtain. Towards a
label-efficient deep learning model, we propose a new task
and dataset for weak-shot monocular height estimation. In
this task, only the relative height labels between pairs of a
small portion of points are given, which is cheaper and more
friendly for humans to annotate. In addition, to enhance the
model performance under the sparse and weak-shot super-
vision, we propose a Transformer-based network for trans-
ferring the learned knowledge from a large-scale synthetic
dataset to real-world data. Experimental results have shown
the effectiveness of the proposed method on a public dataset
under the sparse and weak supervision.

Index Terms— Monocular height estimation, relation
modeling, transfer learning, weakly-supervised Learning.

1. INTRODUCTION

Geometric information from 3D cities can be used for urban
planning and disaster monitoring, which have a close rela-
tionship with the life of residents living in cities. Light De-
tection And Ranging (LiDAR) can actively acquire the Dig-
ital Surface Model (DSM) data that contains accurate height
information. However, LiDAR is cost consuming, and can-
not obtain data in a timely-updated manner. In this context,
obtaining the geometric data from monocular remote sensing
imagery [1, 2] is essential for a rapid and accurate response to
time-critical world events, e.g., natural disasters and damage
forecasting [3].

Monocular height estimation (MHE) targets at predicting
height data from a single aerial image, which has a broad
application potential in practice owing to its fairly simple
data acquisition requirements. Considering the representa-
tion learning advantages [4, 5], various deep learning-based
monocular height estimation methods have been proposed
and steady accuracy gains have been achieved. Mou and
Zhu [1] designed residual convolutional networks for height
estimation and demonstrated its effectiveness on instance
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Fig. 1. Illustration of the weak shot monocular height esti-
mation task. We aim to transfer the learned knowledge from
synthetic dataset to real-world datasets using only sparse or-
dinal relation annotations.

segmentation task. Christie [6] proposed to estimate the geo-
centric pose from monocular oblique images, and promising
results have been achieved. Conditional generative adver-
sarial network (cGAN) [7] was proposed to frame height
estimation as an image translation task. Kunwar [8] ex-
ploited semantic labels as priors to enhance the performance
of height estimation on the large-scale Urban Semantic 3D
(US3D) dataset [9].

However, existing deep learning based methods usually
rely on the large scale training data. This requirement will
be quite challenging for real-world remote sensing applica-
tions at a global scale. It is cost-consuming to acquire enough
ground truth labels for height estimation, such as using Li-
DAR or other 3D modeling pipelines. Furthermore, in some
emergency situations, we have no time to obtain enough train-
ing data. Then, most existing methods will not work due to
the label-scarce problem.

Recent works [10, 11] have shown that it is possible to
train the depth estimation networks using only sparse annota-
tions of relative depth. For human beings, it is difficult to tell
the absolute height given a remote sensing image. However,
we humans are good at answering questions like, which pixel
is higher between a given pair of locations?. Thus, to handle
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Fig. 2. The whole pipeline of the proposed method. First, multi-scale deep features are extracted by the Swin Transformer.
Then, ordinal relation-based loss is used for model training.

the label-scarce problem, we propose to use the sparse and
weak annotations, i.e., the relative height relations for training
the height estimation model in a weakly-supervised manner.

To enhance the ability for learning relative height rela-
tions, we further employ the Transformer-based deep archi-
tectures owing to the effective self-attention mechanism in
Transformers. Furthermore, to tackle the overfitting problem,
we propose to transfer the knowledge learned from a large-
scale synthetic dataset, GTAH [12] to real-world data.

2. METHODOLOGY

2.1. Benchmark Dataset Construction

To handle the difficulty in label annotation for monocular
height estimation task, we propose to build a benchmark
dataset for weak-shot height estimation with only sparse or-
dinal relation annotations. First, we adopt the GTAH dataset,
a large-scale synthetic dataset captured from Grand Theft
Auto, for model pre-training. As GTAH contains contains
28,627 height maps obtained under different imaging con-
ditions, such as weather, daytime, shadow, camera height,
and pose, it is suitable for training a robust deep model for
height estimation. To transfer the learned knowledge from
the synthetic dataset to real-world datasets, we further take in
the DFC 2019 dataset, as shown in Fig. 1. For this real-world
data, only relative height annotations are provided. We aim to
design deep learning models to learn to predict the complete
height maps only supervised by the sparse relative height
annotations.

In practice, we randomly sample 800 pairs of pixels from
each ground truth height map, and compute the relative height
labels for each pair of locations. As there are 262,144 (512×
512) pixels in total for each height map, 800 pairs only occu-

pies 0.3% of the whole training labels. Thus, using this sparse
and easy to get annotations for model training will greatly re-
duce the label efforts required for height estimation task.

2.2. Transformer-based Knowledge Transfer

To model the relative relations for height estimation, we ex-
ploit the Transformer-based models to learn the pair-wise re-
lations between different pixels. For the dense prediction
tasks, Swin Transformer has advantages in reducing the com-
putation complexity by using the window-based self-attention
mechanism [13, 14]. As shown in Fig. 1, the input im-
age is first partitioned evenly into patches. Then multi-head
self-attention is computed separately for each patch. Assum-
ing the output feature at layer l − 1 is xl−1, the formula for
the computation of two Swin Transformer layers can be ex-
pressed as

xl = W-MSA(LN(xl−1)) + xl−1,

xl = MLP(LN(xl)) + xl,

xl+1 = SW-MSA(LN(xl)) + xl,

xl+1 = MLP(LN(xl+1)) + xl+1,

(1)

where W-MSA denotes the window-based multi-head atten-
tion module. The SW-MSA stands for the shifted-window
multi-head attention module. In Fig. 1, we have illustrated the
whole network architecture of our Swin Transformer-based
height estimation model. The PPM module [15] is used to
aggregate multi-scale features maps to enhance the learned
representations. In this work, we first train the propose deep
model on the GTAH dataset. Then, the pre-trained network
parameters are transferred to real-world datasets under weak-
shot ordinal relation-based supervision.



2.3. Weak-shot Ordinal Relation Modeling

Inspired by the work of Chen et al. [10], we propose to con-
strain the model training with the ordinal relations. During the
training stage, given a Transformner-based deep model pre-
trained on the GTAH dataset, we directly predict the height
maps y on the real-world dataset. Then, based on the pre-
dicted height maps, we compute the loss based on the ordinal
relation labels, and enforce the model to learn relative depth:

Lrh =


log (1 + exp (−yik + yjk)) , rk = +1

log (1 + exp (yik − yjk)) , rk = −1

(yik − yjk)
2
, rk = 0

, (2)

where rk is the relation label of the kth pair. The relative con-
straint loss Lrh encourages the predicted depth map to agree
with the ground-truth ordinal relations. Note that only the
pair-wise relation labels are used here for model training. In
this work, k = 800 pairs of pixels are randomly sampled for
each image.

3. EXPERIMENTS

3.1. Dataset and Implementation Details

In this work, we design a new experimental setting using ex-
isting height estimation datasets. First, a large-scale synthetic
dataset from [12] is used for pte-training the deep model.
Then, a dataset from the Data Fusion Contest (DFC) 2019
[16] is processed to provide ordinal relation-based labels for
training. Specifically, 2,200 images are used for training. For
each image, 800 pairs of pixels are randomly chosen for gen-
erating ordinal relation labels. The left 583 images are used
for performance evaluation.

3.2. Evaluation Methods

Two metrics are used for performance evaluation, includ-
ing Root Mean Squared Error (RMSE), and Multi-scale
Gradient Error (MSGE). RMSE, defined as RMSE =√
Σ (yi − ŷi)

2
/n, is a widely-used metric for regression

tasks. RMSE is more sensitive to large height values. Similar
to [12], we also use the MSGE to measure the correctness of
relative relations between different pixels. MSGE is defined
as

MSGE =
1

M

K∑
k=1

M∑
i=1

(∣∣∇xR
k
i

∣∣+ ∣∣∇yR
k
i

∣∣) . (3)

Since the relative height relation cannot provide the ab-
solute height information, in this paper, we also evaluate the
proposed method using the normalized height maps.

3.3. Experimental Results

For performance evaluation, we have conducted experiments
on the DFC 2019 dataset to study the effectiveness of the

Table 1. Experimental results on the DFC 2019 dataset in the
weak-shot supervised setting. The best results are in bold.

DFC 19
Absolute Height Normalized Height
RMSE MSGE RMSE MSGE

GTAH 5.812 3.625 1.681 1.454
DFC 19 2.116 3.031 1.452 1.085

ImageNet,OR(k =800) 3.229 2.871 5.523 2.783
GTAH,OR (k =400) 2.973 2.887 1.679 1.368
GTAH,OR (k =800) 2.900 2.865 1.462 1.295

proposed ordinal relation (OR) based model training method.
Specifically, five different experiments are conducted: 1) di-
rectly using the pre-trained model on GTAH for performance
evaluation on the DFC 2019 dataset; 2) model trained using
complete training set of DFC 2019; 3) model pre-trained on
ImageNet and finetuned using k = 800 OR labels; 4) model
pre-trained on GTAH and finetuned using k = 400 OR labels;
5) model pre-trained on GTAH and finetuned using k = 800
OR labels.

The experimental results are presented in Table 1. From
this table, it can be observed that the performance is lim-
ited when we directly transfer the GTAH pre-trained model to
DFC 2019 dataset. However, the results make sense because
there are large domain shifts between these two datasets re-
garding the height distribution and city styles. Using the tra-
ditional pixel-wise training labels can result in a satisfactory
performance on DFC 2019 dataset.

When OR-based labels are used for the model training,
the results can be clearly improved, for example, RMSE is re-
duced from 5.812 to 2.900. This indicates that although only
0.3% ordinal relation data is used for training, the results can
be significantly improved. Furthermore, we also compare the
performance of GTAH pre-trained and ImageNet pre-trained
models under the OR-based training setting. We can observe
that using GTAH for pre-training can improve the height es-
timation performance by a large margin. In addition, we also
observe that using more OR labels can result in better per-
formance. Some qualitative height estimation examples are
presented in Fig. 3.

4. CONCLUSION

In this paper, we study the height estimation task in a weak-
shot setting. Different from existing deep learning based
methods, the proposed model in this work only uses anno-
tations with relative height between pairs of random points.
This type of annotation is cheaper and more friendly for hu-
mans to annotate. To effectively train the deep model with
sparse and weak-shot labels, we design a Transformer-based
deep model to transfer the learned knowledge from a large-
scale synthetic dataset to real-world datasets. Both qualitative
and quantitative experimental results have demonstrated the
effectiveness of the proposed method.
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Fig. 3. Visualization of some examples on the DFC 2019 dataset. The columns from left to right are 1) the input image, 2)
height maps predicted using pre-trained model on GTAH, 3) height maps predicted using pre-trained model and ordinal relation
training, and 4) the ground truth height maps.
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Brown, “Data fusion contest 2019 (dfc2019),” 2019.


	 Introduction
	 Methodology
	 Benchmark Dataset Construction
	 Transformer-based Knowledge Transfer
	 Weak-shot Ordinal Relation Modeling

	 Experiments
	 Dataset and Implementation Details
	 Evaluation Methods
	 Experimental Results

	 Conclusion
	 References

