Xiong, Zhitong und Zhu, Xiao Xiang (2022) Knowledge Transfer for Label-efficient Monocular Height Estimation. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5377-5380. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883240.
|
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883240
Kurzfassung
Estimating height from monocular remote sensing images is one of the most efficient ways for building large-scale 3D city models. However, existing deep learning based methods usually require a large amount of training data, which could be cost-consuming or even not possible to obtain. Towards a label-efficient deep learning model, we propose a new task and dataset for weak-shot monocular height estimation. In this task, only the relative height labels between pairs of a small portion of points are given, which is cheaper and more friendly for humans to annotate. In addition, to enhance the model performance under the sparse and weak-shot supervision, we propose a Transformer-based network for transferring the learned knowledge from a large-scale synthetic dataset to real-world data. Experimental results have shown the effectiveness of the proposed method on a public dataset under the sparse and weak supervision.
| elib-URL des Eintrags: | https://elib.dlr.de/187207/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
| Titel: | Knowledge Transfer for Label-efficient Monocular Height Estimation | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 2022 | ||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Ja | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| DOI: | 10.1109/IGARSS46834.2022.9883240 | ||||||||||||
| Seitenbereich: | Seiten 5377-5380 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | artificial intelligence in Earth Observation, AI, artificial intelligence, deep learning, Earth Observation, knowledge transfer, building height | ||||||||||||
| Veranstaltungstitel: | IGARSS 2022 | ||||||||||||
| Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||
| Veranstaltungsende: | 22 Juli 2022 | ||||||||||||
| Veranstalter : | IEEE | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
| Hinterlegt von: | Beuchert, Tobias | ||||||||||||
| Hinterlegt am: | 06 Jul 2022 13:50 | ||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags