Xiong, Zhitong und Zhu, Xiao Xiang (2022) Knowledge Transfer for Label-efficient Monocular Height Estimation. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5377-5380. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883240.
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883240
Kurzfassung
Estimating height from monocular remote sensing images is one of the most efficient ways for building large-scale 3D city models. However, existing deep learning based methods usually require a large amount of training data, which could be cost-consuming or even not possible to obtain. Towards a label-efficient deep learning model, we propose a new task and dataset for weak-shot monocular height estimation. In this task, only the relative height labels between pairs of a small portion of points are given, which is cheaper and more friendly for humans to annotate. In addition, to enhance the model performance under the sparse and weak-shot supervision, we propose a Transformer-based network for transferring the learned knowledge from a large-scale synthetic dataset to real-world data. Experimental results have shown the effectiveness of the proposed method on a public dataset under the sparse and weak supervision.
elib-URL des Eintrags: | https://elib.dlr.de/187207/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Knowledge Transfer for Label-efficient Monocular Height Estimation | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2022 | ||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883240 | ||||||||||||
Seitenbereich: | Seiten 5377-5380 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | artificial intelligence in Earth Observation, AI, artificial intelligence, deep learning, Earth Observation, knowledge transfer, building height | ||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Beuchert, Tobias | ||||||||||||
Hinterlegt am: | 06 Jul 2022 13:50 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags