Beker, Teo and Ansari, Homa and Montazeri, Sina and Song, Qian and Zhu, Xiao Xiang (2022) Fine-Tuning CNNS for Decreased Sensitivity to Non-Volcanic Deformation Velocity Signal. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 85-92. XXIV ISPRS Congress 2022, 2022-06-06 - 2022-06-11, Nice, France. doi: 10.5194/isprs-annals-V-3-2022-85-2022. ISSN 2194-9042.
PDF
3MB |
Official URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-3-2022/85/2022/
Abstract
Monitoring volcanic deformations allows us to track dynamic states of a volcano and to know where an eruptions could happen. Spaceborne Synthetic Aperture Radar (SAR) and SAR interferometry (InSAR) techniques created an opportunity to track volcanoes globally, even in inaccessible regions without ground measuring stations.This paper proposes a convolutional neural network (CNN) for detection of volcanic deformations in InSAR velocity maps. We had only a small amount of velocity maps over the region of central South American Andes, therefore the synthetic data are used to train the model from scratch. In the region of interest, the velocity maps contain the patterns of salt lakes and slope induced signal which confuse CNN models trained on synthetic data.In order to bridge the gap between the synthetic and real data, the hybrid synthetic-real data set is used for fine-tuning the model. The hybrid set consists of the real background signal data and synthetic volcanic data. Four fine-tuning sets which were created by different combinations of the original hybrid data, the filtered hybrid data, and simulated data have been used and compared with each other. Besides, we compared four fine-tuning approaches to determine where and how to fine-tune the model. Results show significant improvement in performance by majority of the approaches, and training the last or last two layers have given the best results. In addition, using the FT1 (containing only hybrid set), and FT4 (containing all sets) improved the area under the curve receiver operating characteristic (AUC ROC) from 55% to 86% and 88% respectively.
Item URL in elib: | https://elib.dlr.de/186552/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Fine-Tuning CNNS for Decreased Sensitivity to Non-Volcanic Deformation Velocity Signal | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
DOI: | 10.5194/isprs-annals-V-3-2022-85-2022 | ||||||||||||||||||||||||
Page Range: | pp. 85-92 | ||||||||||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | InSAR, Velocity maps, Volcanic deformations , InceptionResNet v2, Fine-tuning, Synthetic data, Deep learning | ||||||||||||||||||||||||
Event Title: | XXIV ISPRS Congress 2022 | ||||||||||||||||||||||||
Event Location: | Nice, France | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 6 June 2022 | ||||||||||||||||||||||||
Event End Date: | 11 June 2022 | ||||||||||||||||||||||||
Organizer: | ISPRS | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - SAR methods | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Remote Sensing Technology Institute > SAR Signal Processing | ||||||||||||||||||||||||
Deposited By: | Beker, Teo | ||||||||||||||||||||||||
Deposited On: | 24 May 2022 14:26 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:47 |
Repository Staff Only: item control page