Lee, Jongseok and Feng, Jianxiang and Humt, Matthias and Müller, Marcus Gerhard and Triebel, Rudolph (2021) Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes. In: 5th Conference on Robot Learning, CoRL 2021. Proceedings of Machine Learning Research (PMLR). 5th Conference on Robot Learning (CoRL), 2021-11-08 - 2021-11-11, London, United Kingdon. ISSN 2640-3498.
PDF
2MB |
Abstract
This paper presents a probabilistic framework to obtain both reliable and fast uncertainty estimates for predictions with Deep Neural Networks (DNNs). Our main contribution is a practical and principled combination of DNNs with sparse Gaussian Processes (GPs). We prove theoretically that DNNs can be seen as a special case of sparse GPs, namely mixtures of GP experts (MoE-GP), and we devise a learning algorithm that brings the derived theory into practice. In experiments from two different robotic tasks – inverse dynamics of a manipulator and object detection on a micro-aerial vehicle (MAV) – we show the effectiveness of our approach in terms of predictive uncertainty, proved scalability, and runtime efficiency on a Jetson TX2. We thus argue that our approach can pave the way towards reliable and fast robot learning systems with uncertainty wareness.
Item URL in elib: | https://elib.dlr.de/145805/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||
Title: | Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 8 November 2021 | ||||||||||||||||||||||||
Journal or Publication Title: | 5th Conference on Robot Learning, CoRL 2021 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||
Publisher: | Proceedings of Machine Learning Research (PMLR) | ||||||||||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Robotic Introspection, Bayesian Deep Learning, Gaussian Processes | ||||||||||||||||||||||||
Event Title: | 5th Conference on Robot Learning (CoRL) | ||||||||||||||||||||||||
Event Location: | London, United Kingdon | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 8 November 2021 | ||||||||||||||||||||||||
Event End Date: | 11 November 2021 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Explainable Robotic AI, R - Intelligent Mobility (RM) [RO] | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||||||
Deposited By: | Lee, Jongseok | ||||||||||||||||||||||||
Deposited On: | 19 Nov 2021 08:58 | ||||||||||||||||||||||||
Last Modified: | 19 Jul 2024 09:30 |
Repository Staff Only: item control page