Lee, Jongseok und Feng, Jianxiang und Humt, Matthias und Müller, Marcus Gerhard und Triebel, Rudolph (2021) Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes. In: 5th Conference on Robot Learning, CoRL 2021. Proceedings of Machine Learning Research (PMLR). 5th Conference on Robot Learning (CoRL), 2021-11-08 - 2021-11-11, London, United Kingdon. ISSN 2640-3498.
PDF
2MB |
Kurzfassung
This paper presents a probabilistic framework to obtain both reliable and fast uncertainty estimates for predictions with Deep Neural Networks (DNNs). Our main contribution is a practical and principled combination of DNNs with sparse Gaussian Processes (GPs). We prove theoretically that DNNs can be seen as a special case of sparse GPs, namely mixtures of GP experts (MoE-GP), and we devise a learning algorithm that brings the derived theory into practice. In experiments from two different robotic tasks – inverse dynamics of a manipulator and object detection on a micro-aerial vehicle (MAV) – we show the effectiveness of our approach in terms of predictive uncertainty, proved scalability, and runtime efficiency on a Jetson TX2. We thus argue that our approach can pave the way towards reliable and fast robot learning systems with uncertainty wareness.
elib-URL des Eintrags: | https://elib.dlr.de/145805/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 8 November 2021 | ||||||||||||||||||||||||
Erschienen in: | 5th Conference on Robot Learning, CoRL 2021 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | Proceedings of Machine Learning Research (PMLR) | ||||||||||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Robotic Introspection, Bayesian Deep Learning, Gaussian Processes | ||||||||||||||||||||||||
Veranstaltungstitel: | 5th Conference on Robot Learning (CoRL) | ||||||||||||||||||||||||
Veranstaltungsort: | London, United Kingdon | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 8 November 2021 | ||||||||||||||||||||||||
Veranstaltungsende: | 11 November 2021 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Erklärbare Robotische KI, R - Intelligente Mobilität (RM) [RO] | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
Hinterlegt von: | Lee, Jongseok | ||||||||||||||||||||||||
Hinterlegt am: | 19 Nov 2021 08:58 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Jul 2024 09:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags