Lee, Jongseok und Feng, Jianxiang und Humt, Matthias und Müller, Marcus Gerhard und Triebel, Rudolph (2021) Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes. In: 5th Conference on Robot Learning, CoRL 2021. Proceedings of Machine Learning Research (PMLR). 5th Conference on Robot Learning (CoRL), 2021-11-08 - 2021-11-11, London, United Kingdon. ISSN 2640-3498.
|
PDF
2MB |
Kurzfassung
This paper presents a probabilistic framework to obtain both reliable and fast uncertainty estimates for predictions with Deep Neural Networks (DNNs). Our main contribution is a practical and principled combination of DNNs with sparse Gaussian Processes (GPs). We prove theoretically that DNNs can be seen as a special case of sparse GPs, namely mixtures of GP experts (MoE-GP), and we devise a learning algorithm that brings the derived theory into practice. In experiments from two different robotic tasks – inverse dynamics of a manipulator and object detection on a micro-aerial vehicle (MAV) – we show the effectiveness of our approach in terms of predictive uncertainty, proved scalability, and runtime efficiency on a Jetson TX2. We thus argue that our approach can pave the way towards reliable and fast robot learning systems with uncertainty wareness.
| elib-URL des Eintrags: | https://elib.dlr.de/145805/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
| Titel: | Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 8 November 2021 | ||||||||||||||||||||||||
| Erschienen in: | 5th Conference on Robot Learning, CoRL 2021 | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||||||
| Verlag: | Proceedings of Machine Learning Research (PMLR) | ||||||||||||||||||||||||
| ISSN: | 2640-3498 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | Robotic Introspection, Bayesian Deep Learning, Gaussian Processes | ||||||||||||||||||||||||
| Veranstaltungstitel: | 5th Conference on Robot Learning (CoRL) | ||||||||||||||||||||||||
| Veranstaltungsort: | London, United Kingdon | ||||||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
| Veranstaltungsbeginn: | 8 November 2021 | ||||||||||||||||||||||||
| Veranstaltungsende: | 11 November 2021 | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Erklärbare Robotische KI, R - Intelligente Mobilität (RM) [RO] | ||||||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
| Hinterlegt von: | Lee, Jongseok | ||||||||||||||||||||||||
| Hinterlegt am: | 19 Nov 2021 08:58 | ||||||||||||||||||||||||
| Letzte Änderung: | 19 Jul 2024 09:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags