Tang, Xu and Zhang, Huayu and Mou, LiChao and Liu, Fang and Zhang, Xiangrong and Zhu, Xiao Xiang and Jiao, Licheng (2022) An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 5609715. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3106381. ISSN 0196-2892.
PDF
- Postprint version (accepted manuscript)
8MB |
Official URL: https://ieeexplore.ieee.org/document/9526855
Abstract
As a fundamental application, change detection (CD) is widespread in the remote sensing (RS) community. With the increase in the spatial resolution of RS images, high-resolution remote sensing (HRRS) image CD tasks receive growing attention. The change information hidden in multitemporal HRRS images could help discover our planet comprehensively. In the current deep learning era, convolutional neural networks (CNNs) have become one of the most powerful tools for a wide range of RS tasks including HRRS image CD, due to their superb feature learning capacity. However, most of them need a large amount of labeled data to accomplish the CD process, which is challenging or even impractical in many RS applications. Also, given the limited valid receptive field, CNNs can only capture short-range context within HRRS images, which is probably not enough to fully explore change information from the images. To overcome these limitations, in this article, we propose an unsupervised CD method, termed GMCD, based on graph convolutional network (GCN) and metric learning. GMCD consists of a Siamese fully convolution network (FCN), a multiscale dynamic GCN (Mlt-GCN), and a pseudolabel generation mechanism based on metric learning. The Siamese FCN contains a Siamese encoder and a pyramid-shaped decoder, aiming to extract multiscale features and integrate them to generate reliable difference images (DIs). Mlt-GCN focuses on capturing the short- and long-range contextual patterns at feature map level to extract changed and unchanged areas completely. The pseudolabel generation mechanism aims to produce reliable pseudolabels (changed, unchanged, and uncertain) to help accomplish the model training in an unsupervised way. Experiments on four HRRS image CD datasets demonstrate that GMCD outperforms the existing state-of-the-art methods.
Item URL in elib: | https://elib.dlr.de/145757/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3106381 | ||||||||||||||||||||||||||||||||
Page Range: | p. 5609715 | ||||||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Feature extraction,Task analysis,Measurement,Semantics,Remote sensing, Image segmentation,Training | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||
Deposited By: | Rösel, Dr. Anja | ||||||||||||||||||||||||||||||||
Deposited On: | 19 Nov 2021 09:25 | ||||||||||||||||||||||||||||||||
Last Modified: | 01 Jan 2024 03:00 |
Repository Staff Only: item control page