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Abstract— As a fundamental application, change detection
(CD) is widespread in the remote sensing (RS) community. With
the increase in the spatial resolution of RS images, high-resolution
remote sensing (HRRS) image CD tasks receive growing atten-
tion. The change information hidden in multitemporal HRRS
images could help discover our planet comprehensively. In the
current deep learning era, convolutional neural networks (CNNs)
have become one of the most powerful tools for a wide range of
RS tasks including HRRS image CD, due to their superb feature
learning capacity. However, most of them need a large amount of
labeled data to accomplish the CD process, which is challenging
or even impractical in many RS applications. Also, given the
limited valid receptive field, CNNs can only capture short-range
context within HRRS images, which is probably not enough to
fully explore change information from the images. To overcome
these limitations, in this article, we propose an unsupervised
CD method, termed GMCD, based on graph convolutional
network (GCN) and metric learning. GMCD consists of a Siamese
fully convolution network (FCN), a multiscale dynamic GCN
(Mlt-GCN), and a pseudolabel generation mechanism based on
metric learning. The Siamese FCN contains a Siamese encoder
and a pyramid-shaped decoder, aiming to extract multiscale
features and integrate them to generate reliable difference
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images (DIs). Mlt-GCN focuses on capturing the short- and
long-range contextual patterns at feature map level to extract
changed and unchanged areas completely. The pseudolabel gener-
ation mechanism aims to produce reliable pseudolabels (changed,
unchanged, and uncertain) to help accomplish the model training
in an unsupervised way. Experiments on four HRRS image CD
datasets demonstrate that GMCD outperforms the existing state-
of-the-art methods.

Index Terms— Change detection (CD), graph convolution net-
work (GCN), high resolution remote sensing (RS) images, metric
learning, unsupervised.

I. INTRODUCTION

CHANGE detection (CD) is an important and basic
research topic in the remote sensing (RS) community.

It is a process of discovering changed pixels/regions by
comparing multitemporal RS images which cover the same
locations but are collected at different times. In recent years,
with the increase in the type and number of satellites and
the development of Earth observation (EO) technologies,
a growing number of high-resolution RS (HRRS) images are
generated every day. As a useful content interpretation tool,
CD draws more and more attention from the community
and plays an important role in many applications, such as
land cover monitoring [1], disaster assessment [2], and urban
planning [3]. However, since HRRS images are complex in
contents, diverse in types, and huge in volume, th CD is still
a tough and challenging task.

In the last few decades, an ocean of RS image CD methods
have been proposed, and they can be divided into super-
vised and unsupervised models roughly according to whether
the labeled change maps are used in the training phase or
not [4], [5]. For the supervised methods, the ground truth data
are available. Although they can achieve satisfactory results,
collecting the labeled data is a time-consuming, laborious,
and even impractical task in the RS community [6], which
limits the generalization of supervised methods. Therefore,
unsupervised RS CD methods receive growing attention.

Traditional unsupervised CD approaches are usually devel-
oped based on difference images (DIs). To get useful DIs,
many practical algorithms have been proposed, such as prin-
cipal component analysis (PCA) [7] and slow feature analysis
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(SFA) [8]. After getting DI, a change map can be identified
via thresholding [9] or clustering [10] schemes. At the very
beginning, to make full use of pixels in multitemporal RS
images, scholars treated individual pixels within the images
as elementary units to design their CD approaches. For exam-
ple, Chen et al. [11] proposed a Markov random field-based
approach, which considers contextual information among
neighbor pixels to obtain the change map. Nowadays, with the
rapid increase in image resolution [12], an increasing number
of object-/region-based HRRS image CD methods [13] have
been developed, in which homogeneous or heterogeneous
regions rather than pixels are regarded as basic units in the
CD process. Although the traditional methods get successes in
their applications, their behavior is limited by the hand-crafted
visual features extracted from HRRS images.

Recently, deep learning techniques, especially convolutional
neural networks (CNNs) [14], bring computer vision into a
new era. Due to the strong nonlinear fitting capacity and
hierarchical structure of CNNs, the learned features can
obtain high-level semantics and rich spatial context informa-
tion simultaneously. Therefore, CNNs have benefited many
image processing tasks as diverse as object detection [15],
image semantic segmentation [16], and CD [17]. In the RS
community, CNNs are also getting popular. Many researchers
have used CNNs to develop unsupervised HRRS CD meth-
ods, and they achieved impressive results [4]. For example,
Saha et al. [18] proposed an unsupervised context-sensitive
framework, named deep change vector analysis (DCVA),
to accurately capture change information through employing
deep spatial context to complete change vector analysis. These
deep-learning-based methods perform well with deep features,
but their CD results have a high false alarm rate in general.
The reasons behind this can be attributed as follows [19].
First, in HRRS images, there are many pseudochanges (e.g.,
shadow and vegetation color change) that negatively impact
CD results. Second, many approaches simply deem CNNs as
feature extractors, and in this regard, some characteristics of
HRRS images are not fully considered.

To enhance the feature representation and consider specific
properties (e.g., complex scene and changing areas’ chaotic
distribution) of HRRS images thoroughly, we propose an
unsupervised CD model based on a trained Siamese fully
convolutional network (FCN) [20], a multiscale dynamic
graph convolutional network (Mlt-GCN), and metric learning.
We name it GCN and metric learning-based CD (GMCD)
for short.1 Specifically, the main framework of the proposed
model is a Siamese FCN, including a Siamese FCN encoder
and a pyramid-shaped decoder. The former aims to extract
deep features from HRRS images, and the latter focuses on
making full use of multiscale features to predict dual-channel
DIs at various scales. Then, Mlt-GCN uses deep features to
capture multiple long-range contextual patterns to grasp the
relationships among pixels in the HRRS images fully and
convey more comprehensive feature information. Meanwhile,
to enhance the generalization capacity of our model for

1Our source codes are available at https://github.com/TangXu-Group/
Unsupervised-Remote-Sensing-Change-Detection

different types of HRRS images and make full use of the
extracted features, a novel dynamic pseudolabel generating
mechanism is proposed. It combines spatial-spectral feature
analysis and metric learning to ensure that the resulting CD
maps are satisfactory. Furthermore, training with the joint CD
loss can effectively highlight the changed areas and alleviate
the problem of pseudochanges. Note that the spatial and
spectral features in this article denote properties of a feature
map representing the relationships among pixels in the same
channel and the correlations among channels, respectively.
In addition, the proposed method can handle red, green, and
blue (RGB) data or RGB and near-infrared data.

The main contributions of our work can be summarized as
follows.

1) We propose an unsupervised CD network GMCD.
It makes use of GCN and a metric learning algorithm to
learn rich contextual information for CD tasks. We find
that our method is applicable to a wide variety of
imagery types.

2) We propose an Mlt-GCN module whose adjacency
matrices are generated through an attention diagonaliza-
tion procedure, eliminating the projecting process and
reserves more spatial information. On the one hand,
due to the dense connection characteristic of GCN,
Mlt-GCN can adequately capture multiple long-range
contextual patterns in deep feature maps. On the other
hand, the attention diagonalization procedure is able to
extract the spatial-spectral feature, which helps generate
reliable pseudolabels for unsupervised training.

3) A simple yet effective mechanism for generating
dynamic pseudolabels is developed. It combines the
analysis of spatial-spectral features and metric learning.
The former can explore rich spatial and spectral infor-
mation from HRRS images, while the latter is able to
mine the semantic similarity of unlabeled pixels in the
images. They can significantly improve the reliability of
the pseudolabels and help get promising CD results.

4) The comprehensive experiments are conducted on
several HRRS datasets, inclusding QuickBird (QB),
Zi-Yuan 3 (ZY3) [19], SZADA/2 [21], and Montpel-
lier [22]. The encouraging results demonstrate that our
method is effective for the CD task.

The remainder of this article is organized as follows.
Section II briefly reviews the related works on the deep-
learning-based CD and GCN. In Section III, the proposed CD
method is introduced in detail. The experiments and discussion
are presented in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

A. Deep-Learning-Based CD

The existing deep-learning-based RS CD methods can be
divided into two categories: supervised and unsupervised.

In the first category, many successful supervised CD
methods have been proposed in recent years. For example,
Gong et al. [23] introduced a deep-learning-based CD method
for synthetic aperture radar (SAR) images. Some traditional
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approaches and a shallow CNN work together to generate
positive CD results. However, the quality of the produced
CD maps would be influenced by conventional methods. Also,
the developed shallow CNN cannot ensure that the CD results
are satisfactory as the speckle noise of SAR images is not
fully considered and SAR images’ contextual information and
semantics are not fully explored. To take more RS image
properties (e.g., multiscale) into account, researchers pay more
attention to developing various specific CNNs. For instance,
Zhan et al. [24] presented a deep Siamese convolutional net-
work for RS CD tasks. Due to the particular structure of
the Siamese convolutional network, the pixel-wise similarity
between the input bi-temporal images can be automatically
learned, which helps identify changed pixels in images. Con-
volutional coupling network [25] is another typical deep model
for RS CD tasks. It maps two heterogeneous RS images into
a common feature space to estimate the changed information.
Apart from diverse CNNs, autoencoders (AEs) [26] and gener-
ative adversarial networks (GANs) [27] have also been widely
used in RS CD tasks. Through adversarial learning, both rich
semantic information and high-quality DIs can be obtained.

Although the supervised deep RS CD methods achieve
promising results, they need a large number of labeled samples
to train models. It is well known that ground-truth data in
the RS community are expensive to acquire. To deal with
this issue, a series of unsupervised deep CD methods have
been proposed. For example, Jong et al. [28] developed an
unsupervised CD framework under the paradigm of semantic
segmentation. With a specific DI construction approach, any
pre-trained CNN model for semantic segmentation can be
used for CD tasks. To mine more useful information from
RS images for good CD results, some specifically designed
CNNs were developed. An unsupervised RS CD method was
introduced in [29], in which a noise modeling block is added
on top of an FCN-based feature learning module. By modeling
the noise within RS images, the method enhances the ability to
distinguish noise information and further improves the robust-
ness of CD results significantly. Besides, Chen et al. [30]
proposed a deep Siamese multiscale convolutional network for
RS CD tasks. A multiscale feature convolution unit (MFCU)
is designed to extract multiscale information from RS images
for obtaining positive CD results. To accomplish the task of
CD for polarimetric SAR (POLSAR) Images, Liu et al. [31]
introduced a local restrict CNN (LRCNN). It takes the local
similarity into account and conducts finetune based on the
pseudo-labeled pixels obtained from discriminative enhanced
layered difference images (DELDIs). Furthermore, Looking-
Around-and-Into model [32] combined an attention proposal
network and a recurrent CNN for large-scope POLSAR image
CD. Hyperspectral image CD has also developed rapidly in
recent years with CNN. For example, Yuan et al. [33] pro-
posed a robust PCA network through integrating deep feature
with the traditional PCA method and Wang et al. [34] present
an end-to-end 2-D CNN framework to mine cross-channel
gradient features and enhance the result and generalization
ability of hyperspectral image CD with the features extrac-
tion of multisource data. Due to complex contents within
HRRS images, not only global but also local information

should be explored, so the visual attention mechanism [35]
draws considerable attention from the community. A pyramid
feature-based attention-guided Siamese network [36] was pro-
posed to improve CD results by adding a global co-attention
model, which emphasizes the importance of the correlation
between the input feature pairs. Another popular direction
in unsupervised CD is transfer learning [37]. For instance,
Yang et al. [38] designed a transferred deep-learning-based
CD algorithm. The source domain labels can be transferred
to the unlabeled target data so that CD results can be obtained
in an unsupervised manner. Saha et al. [39] proposed an unsu-
pervised CD method based on transfer learning, in which the
changed information between SAR and optical images can be
captured accurately.

B. GCNs in RS Image Processing Tasks

In the general CNN model, convolutional kernels only
convey the regular structured area of data, which cannot fully
reflect the context information hidden in the data. To solve the
drawback, GCN is proposed, which can build the connection
between data and capture global structure information via
message propagation [40]. In the beginning, GCN is widely
used to handle tasks involving unstructured data [41], such
as text classification [42], network architecture search [43],
and 3-D point cloud classification [44]. Afterward, due to the
outstanding performance of diverse GCNs, they are becoming
popular in image processing. The pixels/regions within images
are regarded as graph nodes, and then the local and global
information of the images can be captured simultaneously [45].
For example, Joan et al. [46] proposed a deep locally con-
nected network based on the spectrum of graph Laplacian to
recognize image and audio data. For semantic segmentation
tasks, GCN has also been utilized [47], in which the multilayer
graph structure and features of nodes can be effectively learned
for extracting adequate deep features to improve segmentation
results. In the RS community, GCN is also widely used. Com-
paring with natural images, HRRS images have various targets
with diverse scales. It is a tough task to mine relationships
hidden in the complex content. Thanks to the fact that GCN
can explicitly model multiple long-range contextual patterns in
HRRS images, we can make use of it to understand the content
of an HRRS image in a semi-supervised or unsupervised
way. For instance, Khan et al. [48] presented a multilabel RS
scene recognition method with the help of GCN. This method
can extract discriminative features from RS images using the
region adjacency graph (RAG), which can explore the true
semantics of RS scenes and boost the ability of scene recog-
nition. An RS image classification algorithm was designed
by combining CNN and GCN in [49], where CNN aims at
extracting deep spatial features from images, and GCN focuses
on capturing dependencies among diverse objects. In this way,
the visual information and spatial locations can be fully used to
produce satisfactory results. Chaudhuri et al. [50] introduced
a Siamese graph convolutional network (SGCN) for RS image
retrieval tasks. The resemblance between two images can be
obtained by measuring the similarity between their corre-
sponding graphs.
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Fig. 1. Architecture of GMCD, which consists of a siamese FCN encoder, a pyramid-shaped decoder, a multiscale dynamic GCN, and a dynamic pseudolabel
generation mechanism.

Besides the scene-level tasks mentioned above, pixel-level
tasks can also be solved by GCN. For example, You et al. [51]
introduced a model constructed by a sliced recurrent neural
network (SRNN) and an attention-treated GCN. In this model,
the GCN with attention mechanism makes full use of deep
features and contextual semantics to accomplish pixel-level RS
image recognition. For hyperspectral image (HSI) classifica-
tion tasks, a mini-batch GCN method [52] was designed. The
large-scale GCN is constructed to represent HSI at pixel-level,
and the mini-batch scheme is developed to train the large-scale
GCN with low computational costs. Wan et al. [53] presented
a context-aware dynamic GCN for HSI classification. The
parcels obtained by a super-pixel segmentation algorithm are
regarded as graph nodes, and relationships among the parcels
can be updated dynamically through graph convolutions. The
result of this approach is competitive in HSI classification.
Although GCN is applied to many RS applications, the number
of GCN-based RS CD methods is few. Fortunately, researchers
are paying attention to this field. For example, Saha et al. [54]
proposed a semi-supervised CD method with a multilayer
GCN, which can obtain CD results by exploring multiscale
information deeply. Compared with other conventional semi-
supervised methods, the utilization of GCN pushes this model
to achieve superior CD maps.

III. METHODOLOGY

A. Framework of Our Model

Our model is developed under the encoder-decoder para-
digm, and its flowchart is shown in Fig. 1. It consists of a
pre-trained Siamese FCN encoder, a pyramid-shape decoder,
and an Mlt-GCN model. Suppose there is a pair of temporal
HRRS images I1 ∈ R

H×W×C and I2 ∈ R
H×W×C that have been

pre-processed by some common operations, such as image
registration [55], radiometric relative normalization [56], and
pansharpening [57]. When they are fed into our model,
the trained Siamese FCN encoder is used to extract the deep
spatial features from them. Then, the followed multiscale
dynamic GCN is used to enrich them by capturing nonlocal

and spectral information. Next, the pyramid-shaped decoder
integrates the resulting feature maps obtained by the encoder
and multiscale dynamic GCN to generate dual-channel pre-
dicted DIs with three scales. Besides, to accomplish the CD
task in an unsupervised manner, a dynamic pseudolabel gen-
eration mechanism, which contains the spatial-spectral feature
analysis and metric learning, is developed to get the reliable
and effective pseudolabels using the spatial-spectral features
extracted from Mlt-GCN. Afterward, the pseudolabels and
multiscale DIs are used to train our model with a specific
CD loss function. When our model is trained, the multiscale
DIs are fused for the final DI and change map.

B. Siamese Fully Convolutional Network

To fully extract multiscale spatial information from HRRS
images, we proposed a Siamese encoder and a pyramid-shaped
decoder.

The main structure of the Siamese down-sampling encoder
is a dual-branch weight-shared FCN, which is made up of
the first five convolution blocks of visual geometry group
(VGG) 16. For the first two blocks, each of them consists
of two convolution layers. The other three blocks are com-
posed of three convolution layers. Besides, there are four
max-pooling layers embedded between convolution blocks,
which are used to reduce the resolution of the input image
pairs. On account of the fact that our task is unsupervised,
the proposed FCN is pre-trained on a building extraction
dataset [58]. From the encoder, we can obtain five difference
feature maps (DFMs) {Fd

1, Fd
2 , Fd

3 , Fd0
4 , Fd0

5 } with various scales
through performing element-wise differencing on each scale.
Note that, Fd0

4 and Fd0
5 will further be input to Mlt-GCN to

generate new feature representations Fd
4 and Fd

5 . Note that the
selection of the building extraction dataset is not a limitation
of our method. Some other datasets, such as the Northwest-
ern Polytechnique University (NWPU) very high resolution
(VHR)-10 dataset [59], can be chosen to generate the pre-
trained parameters. Furthermore, the effect of pre-trained
parameters is discussed in the supplementary material.
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Fig. 2. Framework of pyramid-shaped decoder. It takes 5-scale feature maps
generated by encoder as input and generates dual-channel predicted DIs with
three different scales.

To further explore the multiscale information for our task,
we make use of a pyramid-shaped decoder. The specific
structure of the pyramid-shaped decoder is exhibited in Fig. 2.
The five DFMs {Fd

1, Fd
2 , Fd

3 , Fd
4 , Fd

5} can be fused up through
top-down dense connections which are good at integrating
semantic information. In specific, for each block in the
decoder, the corresponding DFM (except Fd

5 ) is channel-wisely
concatenated with feature maps from the previous decoder
blocks which have been processed by deconvolution
(i.e., up-sampling, convolution, and dropout) operations. Then,
the output is convolved by a 1 × 1 kernel with a stride
of 1 × 1. This process can be formulated as

Di = fConv
(
concat

(
Fd

i , Dprev
)
, WConv

)
Dprev = concat( fDConv(Di+1), . . . , fDConv(D4))

× i = 1, 2, 3, 4 (1)

where fConv(·) and fDConv(·) denote the convolution and
deconvolution, respectively, and concat(·) means the channel-
wise concatenation. Finally, the dual-channel predicted DIs
{P1, P2, P3} with three scales can be generated using
{D1, D2, D3} by a 1 × 1 convolution with a stride of 1 × 1.

C. Multiscale Dynamic GCN

Although the FCN encoder could extract multiscale fea-
tures from HRRS images through a series of convolutions,
it can only model short-range relations due to the limited
valid receptive field of convolution operations. The long-range
relationships within HRRS images are not fully exploited but
very important to CD tasks. To overcome this issue, Mlt-GCN
is introduced, and its framework is shown in Fig. 3.

Before explaining Mlt-GCN in detail, we first introduce
GCN briefly. In general, GCN can be regarded as a gener-
alization of CNN to the graph domain, which significantly
boosts mining relations among image features in the spatial
domain. In GCN, assume that there are N nodes, and we

Fig. 3. Process of multiscale dynamic GCN module.

use G = (V, E) to represent an undirected graph, where
V = {v1, v2, . . . , vN } indicates the nodes within G and E =
{ei j, i = 1, . . . , N, j = 1, . . . , N } denotes the edges between
the nodes of G. Also, the adjacency matrix A ∈ R

N×N is used
to describe the weights of edges between each pair of nodes.
In general, A can be calculated as

A =
{

exp
(−γ · dis

(
vi , v j

))
,
(
vi , v j

) ∈ N
0, otherwise

(2)

where γ is an empirical parameter, dis(vi , v j) means the
distance between nodes vi and v j , and N indicates a neigh-
borhood set. To generalize the convolution to graph signals,
a degree matrix D ∈ R

N×N should be computed by Dii =∑
j Ai j first. Then, the normalized Laplacian matrix L =

I − D−1/2AD−1/2 can be calculated, where I denotes the
identity matrix. What is more, the Laplacian matrix can be
further improved with a normalization trick, and its definition
is

L̃ = D̃−1/2ÃD̃−1/2 (3)

where Ã = A + I and D̃ii = ∑
j Ãi j . By doing so,

the propagation of a multilayer GCN can be formulated as

H(l+1) = σ
(

D̃−1/2ÃD̃−1/2H(l)W(l)
)

(4)

where σ(·) is the activation function, and H(l) and W(l)

illustrate the outputs and learnable weights of the lth layer,
respectively.

As shown in Fig. 3, the inputs of Mlt-GCN are Fdo
4 ∈

R
h4×w4×512 and Fdo

5 ∈ R
h5×w5×512 which contain rich semantic

and spatial information. The outputs of Mlt-GCN include two
parts. First, two new DFMs Fd

4 ∈ R
h4×w4×512 and Fd

5 ∈
R

h5×w5×512 are generated under the paradigm of GCN. Unlike
many existing GCN models, which regard parcels of images
(which can be obtained by an over-segment algorithm [60]) as
graph nodes, our Mlt-GCN model treats feature-map vectors
in Fdo

4 and Fdo
5 as graph nodes. Each feature-map vector

corresponds to a region within the input HRRS images. Both
short- and long-range relationships among diverse regions in
the input images can be explored by mining relations among
feature-map vectors within DFMs. Here, the feature-map vec-
tor mentioned above indicates the basic unit corresponding to
specific feature maps. Second, two new feature maps F̃4 and F̃5

are generated by a simple channel-wise attention scheme, con-
sisting of a global average pooling and two 1 × 1 convolutions.
In this way, F̃4 and F̃5 contain both the spatial and spectral
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Fig. 4. Procedure of constructing adjacency matrix and spatial-spectral
feature matrix.

information, which are beneficial to the following pseudolabel
generation. Note that the reason why we only feed Fd0

4 and
Fd0

5 into Mlt-GCN is that compared with {Fd
1 , Fd

2, Fd
3} they

contain much more semantic information. Besides, processing
only Fdo

4 and Fdo
5 could reduce the computational cost.

For two new DFMs Fd
4 and Fd

5 , we first assume that two
adjacency matrices Ã4 and Ã5 have been obtained using Fdo

4
and Fdo

5 . Then, the Laplacian matrices L̃4 and L̃5 can be cal-
culated by (3). The new DFMs, which contain both abundant
semantic knowledge and long- and short-range relations, can
be obtained by a two-layer GCN. To illustrate the construction
process clearly, we denote the input feature maps as Fk ∈
R

hk×wk×512(k = 4, 5), and this process can be formulated as

Fd
k = fReLU

(
L̃k · fReLU

(
L̃k · Fk · Wk

1

)
· Wk

2

)
, k = 4, 5 (5)

where Wk
1, Wk

2 ∈ R
512×512 indicate learnable weights and

fReLU(·) means the rectified linear unit (ReLU) activation
function. Note that the word “dynamic” here means the input
data of Mlt-GCN are learnable.

In general, the adjacency matrix can be calculated by (2).
However, the proper distance metric and empirical parameter
γ are hard to select. Consequently, we develop an adjacency
matrix construction method based on nonlocal block [61]
to calculate adjacency matrices using Fk . The flowchart is
exhibited in Fig. 4. First, Fk is convolved by a 3 × 3
convolution layer followed by ReLU(·) nonlinearity to produce
a new feature representation F′

k ∈ R
hk×wk×64. This step can

decrease the number of parameters in the following computa-
tion and simulate the projecting process of traditional GCN,
which is beneficial to calculate the similarity between different
positions. Then, to measure the relationships among points in
the feature map, F′

k is reshaped into a pair of matrices φ(Fk) ∈
R

hkwk×64 and φ(Fk)
T ∈ R

64×hkwk , where hkwk means the

number of pixels within Fk , and φ(·) indicates the convolution
operation. Second, a global average pooling is performed on
Fk to integrate global information fully. Afterward, we can get
�̃(Fk) using two 1 × 1 convolutions (i.e., Conv2 and Conv3)
followed by the sigmoid function and diagonalization. This
process can be formulated as:

�̃(Fk) = diag(Conv3(Conv2(GlobalAvgPool(Fk)))). (6)

Note that the global average pooling and two 1 × 1
convolutions can be regarded as channel-wise attention, and
the diagonalization can be deemed as the identity matrix for
the adjacency matrix. Finally, Ãk ∈ R

hkwk×hkwk is computed
via the following equation:

Ãk = φ(Fk) × �̃(Fk) × φ(Fk)
T . (7)

Through the construction method, the adjacency matrix Ãk

can be constantly updated in the training phase.
For two new feature maps F̃4 and F̃5, by applying the global

average pooling and 1 × 1 convolution operations to Fk, a one-
dimension vector with the same number of channels as Fk,
k = 4, 5 is obtained, which can be seemed like the weight
of each channel. Then, the spatial-spectral features F̃4 and
F̃5 are generated by assigning weights to the corresponding
channels so that the correlations among channels can be
inserted into Fk, k = 4, 5. This process can be expressed as

F̃k = fscale(Fk, γ (Fk)) (8)

where fscale(·) means adding weight to every channel.

D. Dynamic Pseudolabel Generation Mechanism

To alleviate false and missed detection in the unsupervised
CD task, reliable pseudolabels are necessary [62], which could
provide the required “ground-truth” and help us complete the
model training. In this article, we propose a dynamic pseudola-
bel generation mechanism that consists of spatial-spectral
feature analysis and metric learning.

From the Mlt-GCN model, we obtain two feature maps
F̃4 ∈ R

h4×w4×512, F̃5 ∈ R
h5×w5×512 with spatial-spectral

information, where each value (υk(i, j) ∈ υk, 0 < i < hk, 0 <
j < wk, k = 4, 5.) indicates the degree of change in the
corresponding area. Besides, to further distinguish changed
areas from unchanged ones, we divide pixels of the feature
maps into three classes according to their values with the
analysis of spatial-spectral features. The three classes are
un-changed class (ωn), changed class (ωc), and uncertain class
(ωu). As described in [63], the probability density function
p(υk) of each element υk(i, j) can be modeled as a Gaussian
mixture distribution

p(υ)= p(υk |ωn)p(ωn) + p(υk |ωc)p(ωc)+ p(υk|ωu)p(ωu)

(9)

where the conditional probability of each class is represented
as

p(υk |ωl) = 1√
2πσωl

exp

(
− (υk − μωl )

2

2σ 2
ωl

)
(10)
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Fig. 5. Mechanism of metric learning network.

where l = 3, and μωl and σ 2
ωl

are the mean and variance val-
ues of the corresponding regions, respectively. As mentioned
in [64], the expectation-maximization (EM) algorithm based
on the Bayesian decision theory is proposed. Because of the
curve fitting capability for discrete values of the EM algorithm,
three estimated probability density curves of ωn , ωc and ωu

are presented. As a result, thresholds T1 and T2 that separate
the three classes can be obtained, which is the intersection of
two adjacent curves. Finally, the initial pseudolabels can be
generated as follows:⎧⎪⎨⎪⎩

υk,n(i, j) ∈ ωn, if υk(i, j) < T1

υk,u(i, j) ∈ ωu, if T1 ≤ υk, (i, j) < T2

υk,c(i, j) ∈ ωc, if υk(i, j) ≥ T2.

(11)

However, the obtained initial pseudolabels are not reliable
enough and hard to update during the model training. There-
fore, we propose a metric learning mechanism based on a
similarity network [65] to solve these problems and improve
the credibility of pseudolabels, and its schematic is shown
in Fig. 5. The mechanism mainly includes the calculation of
the centroid of each class and label assignment. First, for
pixels (xd

k (i, j) ∈ xd
k , k = 4, 5) of the DFMs (Fd

4 and Fd
5 ),

the centroid of each class in a DFM is calculated as

cd
l = 1∣∣xd

k,l

∣∣ ∑
xd

k,l

x d
k,l(i, j)

xd
k,l(i, j) ∈ υk,n(i, j), υk,c(i, j), υk,u(i, j) (12)

where |xd
k,l | is the number of chosen pixels of each class, and

l = 1, 2, 3 represents class ωn , ωc, and ωu , respectively. Then,
similarities between unlabeled nodes and class centroids can
be calculated. After that, the unlabeled nodes can be assigned
to the class with the highest probability value. The probability
value V (xd

k ) is computed by

V
(
xd

k

) = exp
[
dis
(
xd

k , cd
l

)]∑l
i=1 exp

[
dis
(
xd

k , cd
l

)] (13)

where dis(·) indicates the distance metric. In this article,
instead of using the Euclidean distance metric, we adopt a
Mahalanobis distance metric (which can be learned during
the model training) to measure the resemblance between the
unlabeled nodes and centroids with the consideration of data

distribution, and its function can be present as

dis
(
xd

k , cd
l

) =
√(

xd
k − cd

l

)T
M
(
xd

k − cd
l

)
(14)

where M = WmWm
T is a symmetric positive semidefinite

matrix and Wm is a trainable weight matrix. After that, we can
divide pixels from Fd

4 and Fd
5 into three categories (i.e., ωn ,

ωc, ωu), which can be regarded as pseudolabels of this training
epoch. Note that the pseudolabels and predicted results can be
updated through a joint CD loss.

E. Joint CD Loss and Changed Pixel Classification

To train our model, we develop a joint CD loss with
two terms: a metric-based cross-entropy loss and the Tversky
loss [66]. As mentioned before, we can get the centroids of
pseudolabels, and every pixel xd

k i from Fd
4 and Fd

5 is assigned
to a label i . Therefore, the metric-based loss can be formulated
as

LMe = −
∑
i=1,2

log
exp
[
dis
(
xd

k i , ci
)]∑2

i=1 exp
[
dis
(
xd

k i , ci
)] . (15)

The metric-based cross-entropy loss can compact the cen-
troids and nodes belonging to the same pseudolabel so that our
model could highlight characteristics of ωn and ωc. In addition,
since ωu is not involved in training, the influence of the
uncertain class can be decreased, and at the same time,
the extent of uncertain areas can also be reduced during
training. The Tversky loss is exploited for DIs to measure the
difference between the predicted results and the pseudolabels.
The Tversky loss is good at dealing with the issue of extreme
class unbalance, and its definition is

LTv = |Pk ∩ Lk |
|Pk ∩ Lk | + α|Pk − Lk | + β|Lk − Pk |
×Lk(i, j) = 0, Lk(i, j) ∈ ωn, Lk(i, j) = 1

×Lk(i, j) ∈ ωc (16)

where Pk and Lk denotes the predicted results and the
pseudolabels of the kth layer, respectively, and |Lk ∩ Pk |,
|Pk − Lk |, and |Lk − Pk | represent the numbers of true
positives (TPs), false positives (FPs), and false negatives
(FNs), respectively. In addition, tradeoffs between |Pk − Lk |
and |Lk − Pk | are controlled by α and β.

In sum, the joint CD loss can be formulated as

LCD = LTv + λLMe (17)

where λ is a hyperparameter that controls contributions of
two terms. After the optimization, the expected dual-channel
predicted DIs could be generated. To fuse results of different
scales and refine region boundaries, a multiscale decision
fusion is utilized in this work. It uses a majority voting method
to determine whether an area changes or not. Finally, we can
obtain a binary change map CM∈ R

H×W .

IV. EXPERIMENT AND DISCUSSION

A. Datasets and Experimental Settings

To verify the effectiveness of our model, we select four
public datasets collected by different sensors, including QB,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 6. Testing datasets.

ZY3 [19], Számítástechnikai és Automatizálási Kutatóintézet
(Institute for Computer Science and Control) (SZTAKI) [21],
and Onera Satellite Change Detection dataset (OSCD) [22].
The QB dataset contains a pair of HRRS images with RGB
bands covering an area of Wuhan, China, and was collected
in 2014 and 2016, respectively. The size and spatial reso-
lution of the images are 1154 × 740 and 2.4 m/pixel. The
ZY3 dataset also covers Wuhan, China. The RGB HRRS
images within ZY3 were obtained in 2009 and 2014, and their
size is 458 × 559 and the spatial resolution is 5.8 m/pixel.
The SZTAKI dataset contains 12 pairs of HRRS images
(acquisition times: 2000 and 2005) provided by the Hungarian
Institute of Geodesy Cartography and RS. We select a pair of
images (SZADA/2) with a size of 952 × 640 and a spatial
resolution of 1.5 m/pixel. The OSCD dataset contains 24 pairs
of multispectral HRRS images with RGB and near-infrared
bands captured by the Sentinel-2 satellites. In the following
experiments, we choose a pair of images from Montpellier
captured in 2015 and 2017. The size and spatial resolution of
them are 451 × 426 and 10 m/pixel. The images of the four
datasets and their corresponding ground-truth maps are shown
in Fig. 6.

GMCD is implemented by Pytorch [67], and all experiments
are completed on a workstation with GeForce RTX 2080 Ti
and 11G memory. The input HRRS images are resized into
640 × 640. Also, we select the Adam algorithm to train
our model. The number of epochs and learning rate are set
to be 40 and 1 × 10−3, respectively. Note that when the
number of epochs reaches 20, we reduce the learning rate to
1 × 10−4. Besides, the values of T1 and T2 can be obtained
by the Bayesian-based EM algorithm [64]. An example is
shown in Fig. 7, which is counted by the QB dataset. For
hyperparameters (α, β, and λ) in the CD joint loss, we set
α = 0.3, β = 0.7 to highlight the importance of FN as
described in [66], and set λ = 1 empirically. The influence
of λ will be discussed in Section IV-D. There is another point
we want to touch on, that is, the memory costs. As mentioned

Fig. 7. Real histogram of different values and estimated probability density
curves of different classes fit by the bayesian-based EM algorithm, which are
counted by the QB dataset.

before, we resize the input data into 640 × 640. In this case,
the memory requirement of the proposed scheme is 8271 MB.

To evaluate the proposed method quantitatively, five assess-
ment criteria are used: precision (Pre), recall (Rec), F1 score,
overall accuracy (OA), and Kappa coefficient. The higher the
values of these metrics are, the better the CD results. Assume
that we get TP, true negative (TN), FP, and FN. Then, the five
metrics can be calculated as follows:

Pre = TP

TP + FP

Rec = TP

TP + FN

F1 = 2 × Pre × Rec

Pre + Rec

OA = TP + TN

TP + FP + TN + FN

Kappa = OA − PC

1 − PC

where PC = (TP + FP) × (TP + FN)

(TP + FP + TN + FN)2

+ (TN + FN) × (FP + TN)

(TP + FP + TN + FN)2 . (18)

B. Performance of GMCD

To evaluate the performance of GMCD, seven popular unsu-
pervised CD methods, including two traditional approaches
and five deep-learning-based methods, are used as competitors.
They are summarized as follows.

1) Iterative slow feature analysis (ISFA) [8], which is an
unsupervised CD method based on SFA.

2) PCA-Kmeans [7], which extracts eigenvectors with PCA
and accomplishes CD through k-means.

3) Symmetric CNN (SCCN) [25], a typical unsupervised
CD method for heterogeneous radar images with a
pretrained convolutional coupling network embedded by
AE.

4) Principal component analysis network (PCANet) [68],
which utilizes Gabor wavelets and fuzzy c-means to
select desired patches and trains a PCANet with these
patches for CD tasks.

5) Deep slow feature analysis (DSFA) [69], which is an
unsupervised CD method that combines deep networks
with SFA. Two deep symmetric networks are used to
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Fig. 8. Change maps obtained by different methods on the QB dataset. (a) ground truth. (b) ISFA. (c) PCA-Kmeans. (d) SCCN. (e) PCA-Net. (f) DSFA.
(g) DCVA. (h) MSDRL. (i) GMCD. (j) Confusion map of GMCD (TP: white; TN: black; FP: green; FN: red).

TABLE I

QUANTITATIVE COMPARISON OF CD RESULTS OBTAINED BY
DIFFERENT METHODS ON THE QB DATASET (%)

learn useful features, and then the SFA module high-
lights changed components in the features.

6) DCVA [18], which is an unsupervised context-sensitivity
CD method. It adopts a pretrained CNN to extract spatial
contextual information and execute DCVA to identity
changed pixels.

7) Multiscale difference representation learning
(MSDRL) [63], which conducts an uncertainly
analysis of spatial-spectral change information and
trains an support vector machine (SVM) classifier with
multiscale patches to obtained good CD results.

For the sake of fairness, all the input image pairs have been
pre-processed by the same operations, including image regis-
tration, radiometric relative normalization, and pansharpening.

1) Results on the QB Dataset: In the QB dataset, farmland,
woodland, and grassland are the main land covers, and the
main change appears in the vegetation. The visual and numer-
ical CD results of different methods on the QB dataset are
shown in Fig. 8 and Table I.

From the observation of Fig. 8, we can find that com-
pared with the ground-truth, CD results of traditional methods
[cf. Fig. 8(b) and (c)] roughly cover changed areas, but include
a large number of false alarms. For SCCN and PCA-Net, due
to the introduction of deep features, the differences between
changed and unchanged regions are widened, and the number
of FPs is significantly decreased [see Fig. 8(d) and (e)]. The
CD map of DSFA [cf. Fig. 8(f)] is not as good as expected.
We can see some distinct false detections, which is because
the simple classification strategy used in DSFA would lead to
incorrect results. DCVA and MSDRL perform better than the

abovementioned methods [see Fig. 8(g) and (h)]. Moreover,
the two methods can not only detect changes but also suppress
noise in images. Nevertheless, boundaries of changed areas
are not clear enough. Owe to GCN and metric learning,
the context within RS images can be fully explored so that
irregular changed areas can be detected precisely by GMCD
[see Fig. 8(i)]. Furthermore, the confusion map [Fig. 8(j)]
illustrates that our method is able to detect main changed areas
more completely.

As displayed in Table I, the performance of GMCD is
the best in terms of F1 (73.02%), OA (93.82%), and Kappa
(69.54%). Compared with other competitors, the improve-
ments in Kappa delivered by our model are 25.68% (over
ISFA), 25.99% (over PCA-Kmeans), 23.07% (over SCCN),
14.55% (over PCANet), 27.99% (over DSFA), 9.56% (over
DCVA), and 3.78% (over MSDRL). However, our precision
and recall values are not the highest. The reason is that GMCD
pays more attention to balance precision and recall. Although
our method performs slightly weaker in these two metrics,
overall, its performance is the best among all methods.

Fig. 8 and Table I confirm the effectiveness of our method
on the QB dataset. However, an interesting observation is
that GMCD fails in accurately detecting small areas. Also,
the unsatisfactory precision reported in Table I indicates that
the FP rate of our model is relatively large. These drawbacks
are mainly caused by the resized operation. Since the original
images in the QB dataset are large, the resize operation
would lead to the loss of details. This point can be further
confirmed by CD results on other smaller datasets (e.g.,
SZADA/2 dataset).

2) Results on the ZY3 Dataset: In the ZY3 dataset, the pri-
mary change type is construction. The shapes of changed
regions are mostly polygonal, and changed areas are large. The
visual and numerical results of different methods are shown
in Fig. 9 and Table II.

As shown in Fig. 9(b) and (c), CD results of traditional
methods (ISFA and PCA-Kmeans) suffer from salt-and-
pepper noise, which indicates that they may be not suitable
to process this dataset. With deep learning technologies,
SCCN, PCA-Net, and DSFA can suppress false detections
effectively, and changed regions can be depicted clearly
[see Fig. 9(d)–(f)]. DCVA and MSDRL outperform other
competing methods [Fig. 9(g) and (h)]. They can detect more
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Fig. 9. Change maps obtained by different methods on the ZY3 dataset. (a) Ground truth. (b) ISFA. (c) PCA-Kmeans. (d) SCCN. (e) PCA-Net. (f) DSFA.
(g) DCVA. (h) MSDRL. (i) GMCD. (j) Confusion map of GMCD (TP: white; TN: black; FP: green; FN: red).

TABLE II

QUANTITATIVE COMPARISON OF CD RESULTS OBTAINED BY

DIFFERENT METHODS ON THE ZY3 DATASET (%)

changed areas. However, the shapes of these areas are not
satisfactory compared with the ground-truth [cf. Fig. 9(a)].
In contrast with all competitors, both changed regions and their
boundaries can be well identified by our approach, which can
be verified in CD map [Fig. 9(i)] and confusion map [Fig. 9(j)].
These encouraging results show that our model works pretty
well on the ZY3 dataset.

As can be seen in Table II, GMCD achieves the best
performance in terms of most assessment criteria. For instance,
compared with other methods, increases in Kappa gained
by our model are 25.68% (over ISFA), 20.77% (over
PCA-Kmeans), 22.26% (over SCCN), 17.63% (over PCANet),
14.56% (over DSFA), 27.39% (over DCVA), and 5.79% (over
MSDRL). The enhancements in OA are 8.68% (over ISFA),
4.8% (over PCA-Kmeans), 3.24% (over SCCN), 3.17% (over
PCANet), 1.59% (over DSFA), 4.12% (over DCVA), and
0.98% (over MSDRL). However, the recall of our model is
a little lower than that of ISFA. This is the price of a great
increase in precision that the value of GMCD is 23.65% higher
than that of ISFA. The positive numerical results demonstrate
the effectiveness of our method again.

3) Results on the SZADA/2 Dataset: The SZADA/2 dataset
is gathered by different sensors and contains many kinds
of changes, such as roadway construction, house building,

TABLE III

QUANTITATIVE COMPARISON OF CD RESULTS OBTAINED BY

DIFFERENT METHODS ON THE SZADA/2 DATASET (%)

and fresh plowland, which make changed areas irregular
[see Fig. 10(a)]. The visual and numerical CD results of
different methods on this dataset are shown in Fig. 10 and
Table III.

From the observation of visible results, we can see that CD
results of the two traditional methods [cf. Fig. 10(b) and (c)]
are extremely different, which indicates the instability of
conventional methods. Fig. 10(d)–(g) show the results gen-
erated by SCCN, PCANet, DSFA, and DCVA. SCCN and
DSFA tend to reveal all possible changes, so their CD
results are refined. PCANet and DCVA miss many dis-
crete changed areas because they focus more on highlighting
large changes. As shown in Fig. 10(h), MSDRL further
improves the CD result at the cost of losing small changes.
Comparing with them, the proposed method is capable of
simultaneously emphasizing changed regions and preserving
details [see Fig. 10(i) and 10(j)]. This is because of the
use of Mlt-GCN and metric learning in our model. These
promising results illustrate that our method is superior to the
SZADA/2 dataset.

As reported in Table III, we can see that our model
performs the best. Taking F1 score as an example, compared
with other methods, the improvements in it obtained by our
model are 14.06% (over ISFA), 35.49% (over PCA-Kmeans),
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Fig. 10. Change maps obtained by different methods on the SZADA/2 dataset. (a) Ground truth. (b) ISFA. (c) PCA-Kmeans. (d) SCCN. (e) PCA-Net.
(f) DSFA. (g) DCVA. (h) MSDRL. (i) GMCD. (j) Confusion map of GMCD (TP: white; TN: black; FP: green; FN: red).

TABLE IV

QUANTITATIVE COMPARISON OF CD RESULTS OBTAINED BY

DIFFERENT METHODS ON THE MONTPELLIER DATASET (%)

17.86% (over SCCN), 18.04% (over PCANet), 12.86% (over
DSFA), 17.82% (over DCVA), and 6.13% (over MSDRL).

These positive results prove the usefulness of our model
in CD tasks. Also, through the above three experiments,
the effectiveness of GMCD using 3-channel images for CD
has been fully verified.

4) Results on the Montpellier Dataset: The Montpellier
dataset is a pair of 4-channel images, and the main content
is urban, which indicates that the scene is complicated and
the changed areas are tanglesome [see Fig. 11(a)]. The visual
and numerical CD results of different methods on this dataset
are shown in Fig. 11 and Table IV.

Different from the SZADA/2 dataset, PCA-Kmeans
outperforms ISFA on this dataset, which further exhibits the
instability of the traditional methods. In addition, some deep-
learning-based methods, such as SCCN and DSFA, do not
perform well on this scene as shown in Fig. 11(d) and (f).
Besides, due to the large diversity of CD regions in the dataset,
PCA-Net, DCVA, and MSDRL miss a lot of detailed regions
[cf. Fig. 11(e), (g), and (h)]. On account of introducing the
spectral information into the generation of pseudolabels, our
method is able to detect more tiny changed areas, as shown
in Fig. 11(i) and (j). As shown in Table IV, the precision
and recall of our method are 82.28% and 73.64%, respec-
tively. Although the precision is slightly lower than that of
MSDRL and the recall is slightly lower than that of PCANet,

the proposed method is the best in terms of primary metrics,
i.e., F1 score, OA, and Kappa.

C. Ablation Studies

To fully evaluate contributions of the different components
of GMCD, we conduct the following ablation studies. We treat
the proposed Siamese FCN as the basic CD model com-
posed of a pretrained Siamese encoder and a pyramid-shaped
decoder. The pseudolabels are generated by the spatial-spectral
analysis, where the learned features and input images are
regarded as spatial and spectral features, respectively. The
specific experimental settings can be found in [63]. Then,
we introduce three different modules, namely Mlt-GCN, met-
ric learning, and fusion module, into the basic model step
by step. For the sake of simplicity, we name “Baseline +
Mlt-GCN” Model-1, record “Baseline + Mlt-GCN + metric
learning” Model-2, represent “Baseline + metric learning +
fusion” Model-3, and call “Baseline + Mlt-GCN + metric
learning + fusion” Model-4. In fact, Model-4 equals GMCD.
Three overall assessment criteria (F1, OA, and Kappa) are
used to evaluate CD results, and they are reported in Table V.

By using the Mlt-GCN module, Model-1 is capable of
better-capturing irregular and long-range contextual informa-
tion. Besides, it can detect small CD areas accurately in the
image pairs and avoid missed detections effectively. Accord-
ingly, F1, OA, and Kappa values of Model-1 on the four
datasets are increased distinctly. For example, on the QB
dataset, the enhancement in F1 is 3.43%, the increase in OA is
0.89%, and the improvement in Kappa is 3.95%. These results
demonstrate the effectiveness of the Mlt-GCN module.

When adding the metric learning module, Model-2 can
dynamically and adaptively generate pseudolabels and pro-
vides a helpful loss function for optimizing the network, which
can enlarge the difference between the change and unchanged
classes and highlight change areas. The significant gains in
terms of F1 score, OA, and Kappa coefficient on the four
datasets prove the advantages of this module.

Model-3 contains all components within GMCD except
Mlt-GCN. Thus, it can only capture the information and
short-range relations from the fixed rectangular areas. Also,
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Fig. 11. Change maps obtained by different methods on the Montpellier*** dataset. (a) Ground truth. (b) ISFA. (c) PCA-Kmeans. (d) SCCN. (e) PCA-Net.
(f) DSFA. (g) DCVA. (h) MSDRL. (i) GMCD. (j) Confusion map of GMCD (TP: white; TN: black; FP: green; FN: red).

TABLE V

ABLATION STUDIES OF GMCD WITH DIFFERENT MODULES ON FOUR DATASETS (%)

due to the absence of Mlt-GCN, the input data of the
pseudolabel generation block does not contain the necessary
spectral knowledge. Accordingly, its behavior is the weakest
among different models. This demonstrates the importance
of Mlt-GCN and the effectiveness of long-range contextual
patterns.

Through the fusion operation, Model-4 can integrate DIs
with different scales together and enhance the model’s ability
to recognize more details. Therefore, the F1 score, OA, and
Kappa coefficient are further increased on four datasets. For
example, on the QB dataset, the improvement in F1 is 0.64%,
the enhancement in OA is 0.27%, and the increase in Kappa
is 0.8%. The effectiveness of the fusion operation has been
adequately verified through these experiments.

D. Influence of λ

For the proposed joint CD loss [see (17)], the hyperparame-
ter λ controls contributions of LMe and LTv. LMe focuses on
compacting samples and their corresponding class centers and
highlighting change and unchanged labels to generate useful
pseudolabels. LTv aims to mitigate the negative impact of the
issue of unbalanced classes. To dive into the influence of λ,
we set it as 0.5, 0.8, 1, 1.2, and 1.5, respectively, and observe
variations in the performance of GMCD on four different
datasets (see Fig. 12). As can be seen in this figure, GMCD
achieves the best results when λ = 1 for all datasets. Upon
λ is less than 1, its performance reduces dramatically, which
means that the effect of LMe is weakened, and the accuracy
of pseudolabels decrease to a certain extent. When λ is larger
than 1, the classification loss function LTv has a decreased

Fig. 12. Relationship between λ and the CD results (OA and kappa) on four
datasets. (a) QB. (b) ZY3. (c) SZADA/2. (d) Montpellier.

impact, resulting in the drop of the CD results. Therefore,
we set λ as 1 to ensure that functions of the two components
(LMe and LTv) can be fully utilized simultaneously.
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Fig. 13. Computational costs of MSDRL and GMCD.

E. Computational Costs
Fig. 13 shows the computational cost of GMCD, and that

of MSDRL is also exhibited for reference because MSDRL
is the second best model in our experiments, and its train-
ing process is similar to ours. Note that times displayed
in Fig. 13 are computational costs of whole processes without
pretraining. It is evident that GMCD is slower than MSDRL,
which is mainly because of the use of computing resources by
Mlt-GCN and the time consumption during the generation of
pseudolabels. Besides, our method consumes a little more time
on the Montpellier dataset than on others, as the images of the
Montpellier scene include one more channel, which increases
the computational cost. However, on the whole, the maximum
computational time, 379 s, is also acceptable.

V. CONCLUSION

This article proposes an unsupervised CD method, GMCD,
using HRRS images based on GCN and metric learning.
GMCD consists of a pretrained Siamese FCN encoder and
a pyramid-shaped decoder. The encoder is responsible for
extracting discriminative features from the bi-temporal input
images, and the decoder aims to integrate multiscale fea-
ture maps and generate dual-channel DIs. To capture short-
and long-range contextual patterns within HRRS images,
we devise Mlt-GCN and embed it into the encoder. We propose
a dynamic pseudolabel generation mechanism, in order to train
our method in an unsupervised way. By analyzing spatial-
spectral features and using metric learning, not only can
change and unchanged areas are highlighted, the quality of
pseudolabels is also improved. Also, a joint CD loss is used to
balance the pseudolabel generation and change area detection.
Finally, a multiscale decision fusion is used to integrate DIs.
The effectiveness of our GMCD is demonstrated by extensive
experiments on four datasets.

The visual and numerical results on four different datasets
show that our method outperforms the other competitors,
including traditional and deep-learning-based methods. How-
ever, due to the use of GCN and the generation of dynamic
pseudolabels in our method, the detection speed of GMCD
is relatively slow. Therefore, our further work will aim to
reduce the computational complexity of our model to speed
up detection.
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