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Abstract� As a fundamental application, change detection
(CD) is widespread in the remote sensing (RS) community. With
the increase in the spatial resolution of RS images, high-resolution
remote sensing (HRRS) image CD tasks receive growing atten-
tion. The change information hidden in multitemporal HRRS
images could help discover our planet comprehensively. In the
current deep learning era, convolutional neural networks (CNNs)
have become one of the most powerful tools for a wide range of
RS tasks including HRRS image CD, due to their superb feature
learning capacity. However, most of them need a large amount of
labeled data to accomplish the CD process, which is challenging
or even impractical in many RS applications. Also, given the
limited valid receptive �eld, CNNs can only capture short-range
context within HRRS images, which is probably not enough to
fully explore change information from the images. To overcome
these limitations, in this article, we propose an unsupervised
CD method, termed GMCD, based on graph convolutional
network (GCN) and metric learning. GMCD consists of a Siamese
fully convolution network (FCN), a multiscale dynamic GCN
(Mlt-GCN), and a pseudolabel generation mechanism based on
metric learning. The Siamese FCN contains a Siamese encoder
and a pyramid-shaped decoder, aiming to extract multiscale
features and integrate them to generate reliable difference
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images (DIs). Mlt-GCN focuses on capturing the short- and
long-range contextual patterns at feature map level to extract
changed and unchanged areas completely. The pseudolabel gener-
ation mechanism aims to produce reliable pseudolabels (changed,
unchanged, and uncertain) to help accomplish the model training
in an unsupervised way. Experiments on four HRRS image CD
datasets demonstrate that GMCD outperforms the existing state-
of-the-art methods.

Index Terms� Change detection (CD), graph convolution net-
work (GCN), high resolution remote sensing (RS) images, metric
learning, unsupervised.

I. INTRODUCTION

CHANGE detection (CD) is an important and basic
research topic in the remote sensing (RS) community.

It is a process of discovering changed pixels/regions by
comparing multitemporal RS images which cover the same
locations but are collected at different times. In recent years,
with the increase in the type and number of satellites and
the development of Earth observation (EO) technologies,
a growing number of high-resolution RS (HRRS) images are
generated every day. As a useful content interpretation tool,
CD draws more and more attention from the community
and plays an important role in many applications, such as
land cover monitoring [1], disaster assessment [2], and urban
planning [3]. However, since HRRS images are complex in
contents, diverse in types, and huge in volume, th CD is still
a tough and challenging task.

In the last few decades, an ocean of RS image CD methods
have been proposed, and they can be divided into super-
vised and unsupervised models roughly according to whether
the labeled change maps are used in the training phase or
not [4], [5]. For the supervised methods, the ground truth data
are available. Although they can achieve satisfactory results,
collecting the labeled data is a time-consuming, laborious,
and even impractical task in the RS community [6], which
limits the generalization of supervised methods. Therefore,
unsupervised RS CD methods receive growing attention.

Traditional unsupervised CD approaches are usually devel-
oped based on difference images (DIs). To get useful DIs,
many practical algorithms have been proposed, such as prin-
cipal component analysis (PCA) [7] and slow feature analysis
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(SFA) [8]. After getting DI, a change map can be identified
via thresholding [9] or clustering [10] schemes. At the very
beginning, to make full use of pixels in multitemporal RS
images, scholars treated individual pixels within the images
as elementary units to design their CD approaches. For exam-
ple, Chen et al. [11] proposed a Markov random field-based
approach, which considers contextual information among
neighbor pixels to obtain the change map. Nowadays, with the
rapid increase in image resolution [12], an increasing number
of object-/region-based HRRS image CD methods [13] have
been developed, in which homogeneous or heterogeneous
regions rather than pixels are regarded as basic units in the
CD process. Although the traditional methods get successes in
their applications, their behavior is limited by the hand-crafted
visual features extracted from HRRS images.

Recently, deep learning techniques, especially convolutional
neural networks (CNNs) [14], bring computer vision into a
new era. Due to the strong nonlinear fitting capacity and
hierarchical structure of CNNs, the learned features can
obtain high-level semantics and rich spatial context informa-
tion simultaneously. Therefore, CNNs have benefited many
image processing tasks as diverse as object detection [15],
image semantic segmentation [16], and CD [17]. In the RS
community, CNNs are also getting popular. Many researchers
have used CNNs to develop unsupervised HRRS CD meth-
ods, and they achieved impressive results [4]. For example,
Saha et al. [18] proposed an unsupervised context-sensitive
framework, named deep change vector analysis (DCVA),
to accurately capture change information through employing
deep spatial context to complete change vector analysis. These
deep-learning-based methods perform well with deep features,
but their CD results have a high false alarm rate in general.
The reasons behind this can be attributed as follows [19].
First, in HRRS images, there are many pseudochanges (e.g.,
shadow and vegetation color change) that negatively impact
CD results. Second, many approaches simply deem CNNs as
feature extractors, and in this regard, some characteristics of
HRRS images are not fully considered.

To enhance the feature representation and consider specific
properties (e.g., complex scene and changing areas’ chaotic
distribution) of HRRS images thoroughly, we propose an
unsupervised CD model based on a trained Siamese fully
convolutional network (FCN) [20], a multiscale dynamic
graph convolutional network (Mlt-GCN), and metric learning.
We name it GCN and metric learning-based CD (GMCD)
for short.1 Specifically, the main framework of the proposed
model is a Siamese FCN, including a Siamese FCN encoder
and a pyramid-shaped decoder. The former aims to extract
deep features from HRRS images, and the latter focuses on
making full use of multiscale features to predict dual-channel
DIs at various scales. Then, Mlt-GCN uses deep features to
capture multiple long-range contextual patterns to grasp the
relationships among pixels in the HRRS images fully and
convey more comprehensive feature information. Meanwhile,
to enhance the generalization capacity of our model for

1Our source codes are available at https://github.com/TangXu-Group/
Unsupervised-Remote-Sensing-Change-Detection

different types of HRRS images and make full use of the
extracted features, a novel dynamic pseudolabel generating
mechanism is proposed. It combines spatial-spectral feature
analysis and metric learning to ensure that the resulting CD
maps are satisfactory. Furthermore, training with the joint CD
loss can effectively highlight the changed areas and alleviate
the problem of pseudochanges. Note that the spatial and
spectral features in this article denote properties of a feature
map representing the relationships among pixels in the same
channel and the correlations among channels, respectively.
In addition, the proposed method can handle red, green, and
blue (RGB) data or RGB and near-infrared data.

The main contributions of our work can be summarized as
follows.

1) We propose an unsupervised CD network GMCD.
It makes use of GCN and a metric learning algorithm to
learn rich contextual information for CD tasks. We find
that our method is applicable to a wide variety of
imagery types.

2) We propose an Mlt-GCN module whose adjacency
matrices are generated through an attention diagonaliza-
tion procedure, eliminating the projecting process and
reserves more spatial information. On the one hand,
due to the dense connection characteristic of GCN,
Mlt-GCN can adequately capture multiple long-range
contextual patterns in deep feature maps. On the other
hand, the attention diagonalization procedure is able to
extract the spatial-spectral feature, which helps generate
reliable pseudolabels for unsupervised training.

3) A simple yet effective mechanism for generating
dynamic pseudolabels is developed. It combines the
analysis of spatial-spectral features and metric learning.
The former can explore rich spatial and spectral infor-
mation from HRRS images, while the latter is able to
mine the semantic similarity of unlabeled pixels in the
images. They can significantly improve the reliability of
the pseudolabels and help get promising CD results.

4) The comprehensive experiments are conducted on
several HRRS datasets, inclusding QuickBird (QB),
Zi-Yuan 3 (ZY3) [19], SZADA/2 [21], and Montpel-
lier [22]. The encouraging results demonstrate that our
method is effective for the CD task.

The remainder of this article is organized as follows.
Section II briefly reviews the related works on the deep-
learning-based CD and GCN. In Section III, the proposed CD
method is introduced in detail. The experiments and discussion
are presented in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

A. Deep-Learning-Based CD
The existing deep-learning-based RS CD methods can be

divided into two categories: supervised and unsupervised.
In the first category, many successful supervised CD

methods have been proposed in recent years. For example,
Gong et al. [23] introduced a deep-learning-based CD method
for synthetic aperture radar (SAR) images. Some traditional
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approaches and a shallow CNN work together to generate
positive CD results. However, the quality of the produced
CD maps would be influenced by conventional methods. Also,
the developed shallow CNN cannot ensure that the CD results
are satisfactory as the speckle noise of SAR images is not
fully considered and SAR images’ contextual information and
semantics are not fully explored. To take more RS image
properties (e.g., multiscale) into account, researchers pay more
attention to developing various specific CNNs. For instance,
Zhan et al. [24] presented a deep Siamese convolutional net-
work for RS CD tasks. Due to the particular structure of
the Siamese convolutional network, the pixel-wise similarity
between the input bi-temporal images can be automatically
learned, which helps identify changed pixels in images. Con-
volutional coupling network [25] is another typical deep model
for RS CD tasks. It maps two heterogeneous RS images into
a common feature space to estimate the changed information.
Apart from diverse CNNs, autoencoders (AEs) [26] and gener-
ative adversarial networks (GANs) [27] have also been widely
used in RS CD tasks. Through adversarial learning, both rich
semantic information and high-quality DIs can be obtained.

Although the supervised deep RS CD methods achieve
promising results, they need a large number of labeled samples
to train models. It is well known that ground-truth data in
the RS community are expensive to acquire. To deal with
this issue, a series of unsupervised deep CD methods have
been proposed. For example, Jong et al. [28] developed an
unsupervised CD framework under the paradigm of semantic
segmentation. With a specific DI construction approach, any
pre-trained CNN model for semantic segmentation can be
used for CD tasks. To mine more useful information from
RS images for good CD results, some specifically designed
CNNs were developed. An unsupervised RS CD method was
introduced in [29], in which a noise modeling block is added
on top of an FCN-based feature learning module. By modeling
the noise within RS images, the method enhances the ability to
distinguish noise information and further improves the robust-
ness of CD results significantly. Besides, Chen et al. [30]
proposed a deep Siamese multiscale convolutional network for
RS CD tasks. A multiscale feature convolution unit (MFCU)
is designed to extract multiscale information from RS images
for obtaining positive CD results. To accomplish the task of
CD for polarimetric SAR (POLSAR) Images, Liu et al. [31]
introduced a local restrict CNN (LRCNN). It takes the local
similarity into account and conducts finetune based on the
pseudo-labeled pixels obtained from discriminative enhanced
layered difference images (DELDIs). Furthermore, Looking-
Around-and-Into model [32] combined an attention proposal
network and a recurrent CNN for large-scope POLSAR image
CD. Hyperspectral image CD has also developed rapidly in
recent years with CNN. For example, Yuan et al. [33] pro-
posed a robust PCA network through integrating deep feature
with the traditional PCA method and Wang et al. [34] present
an end-to-end 2-D CNN framework to mine cross-channel
gradient features and enhance the result and generalization
ability of hyperspectral image CD with the features extrac-
tion of multisource data. Due to complex contents within
HRRS images, not only global but also local information

should be explored, so the visual attention mechanism [35]
draws considerable attention from the community. A pyramid
feature-based attention-guided Siamese network [36] was pro-
posed to improve CD results by adding a global co-attention
model, which emphasizes the importance of the correlation
between the input feature pairs. Another popular direction
in unsupervised CD is transfer learning [37]. For instance,
Yang et al. [38] designed a transferred deep-learning-based
CD algorithm. The source domain labels can be transferred
to the unlabeled target data so that CD results can be obtained
in an unsupervised manner. Saha et al. [39] proposed an unsu-
pervised CD method based on transfer learning, in which the
changed information between SAR and optical images can be
captured accurately.

B. GCNs in RS Image Processing Tasks

In the general CNN model, convolutional kernels only
convey the regular structured area of data, which cannot fully
reflect the context information hidden in the data. To solve the
drawback, GCN is proposed, which can build the connection
between data and capture global structure information via
message propagation [40]. In the beginning, GCN is widely
used to handle tasks involving unstructured data [41], such
as text classification [42], network architecture search [43],
and 3-D point cloud classification [44]. Afterward, due to the
outstanding performance of diverse GCNs, they are becoming
popular in image processing. The pixels/regions within images
are regarded as graph nodes, and then the local and global
information of the images can be captured simultaneously [45].
For example, Joan et al. [46] proposed a deep locally con-
nected network based on the spectrum of graph Laplacian to
recognize image and audio data. For semantic segmentation
tasks, GCN has also been utilized [47], in which the multilayer
graph structure and features of nodes can be effectively learned
for extracting adequate deep features to improve segmentation
results. In the RS community, GCN is also widely used. Com-
paring with natural images, HRRS images have various targets
with diverse scales. It is a tough task to mine relationships
hidden in the complex content. Thanks to the fact that GCN
can explicitly model multiple long-range contextual patterns in
HRRS images, we can make use of it to understand the content
of an HRRS image in a semi-supervised or unsupervised
way. For instance, Khan et al. [48] presented a multilabel RS
scene recognition method with the help of GCN. This method
can extract discriminative features from RS images using the
region adjacency graph (RAG), which can explore the true
semantics of RS scenes and boost the ability of scene recog-
nition. An RS image classification algorithm was designed
by combining CNN and GCN in [49], where CNN aims at
extracting deep spatial features from images, and GCN focuses
on capturing dependencies among diverse objects. In this way,
the visual information and spatial locations can be fully used to
produce satisfactory results. Chaudhuri et al. [50] introduced
a Siamese graph convolutional network (SGCN) for RS image
retrieval tasks. The resemblance between two images can be
obtained by measuring the similarity between their corre-
sponding graphs.
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Fig. 1. Architecture of GMCD, which consists of a siamese FCN encoder, a pyramid-shaped decoder, a multiscale dynamic GCN, and a dynamic pseudolabel
generation mechanism.

Besides the scene-level tasks mentioned above, pixel-level
tasks can also be solved by GCN. For example, You et al. [51]
introduced a model constructed by a sliced recurrent neural
network (SRNN) and an attention-treated GCN. In this model,
the GCN with attention mechanism makes full use of deep
features and contextual semantics to accomplish pixel-level RS
image recognition. For hyperspectral image (HSI) classifica-
tion tasks, a mini-batch GCN method [52] was designed. The
large-scale GCN is constructed to represent HSI at pixel-level,
and the mini-batch scheme is developed to train the large-scale
GCN with low computational costs. Wan et al. [53] presented
a context-aware dynamic GCN for HSI classification. The
parcels obtained by a super-pixel segmentation algorithm are
regarded as graph nodes, and relationships among the parcels
can be updated dynamically through graph convolutions. The
result of this approach is competitive in HSI classification.
Although GCN is applied to many RS applications, the number
of GCN-based RS CD methods is few. Fortunately, researchers
are paying attention to this field. For example, Saha et al. [54]
proposed a semi-supervised CD method with a multilayer
GCN, which can obtain CD results by exploring multiscale
information deeply. Compared with other conventional semi-
supervised methods, the utilization of GCN pushes this model
to achieve superior CD maps.

III. METHODOLOGY

A. Framework of Our Model
Our model is developed under the encoder-decoder para-

digm, and its flowchart is shown in Fig. 1. It consists of a
pre-trained Siamese FCN encoder, a pyramid-shape decoder,
and an Mlt-GCN model. Suppose there is a pair of temporal
HRRS images I1 � RH×W×C and I2 � RH×W×C that have been
pre-processed by some common operations, such as image
registration [55], radiometric relative normalization [56], and
pansharpening [57]. When they are fed into our model,
the trained Siamese FCN encoder is used to extract the deep
spatial features from them. Then, the followed multiscale
dynamic GCN is used to enrich them by capturing nonlocal

and spectral information. Next, the pyramid-shaped decoder
integrates the resulting feature maps obtained by the encoder
and multiscale dynamic GCN to generate dual-channel pre-
dicted DIs with three scales. Besides, to accomplish the CD
task in an unsupervised manner, a dynamic pseudolabel gen-
eration mechanism, which contains the spatial-spectral feature
analysis and metric learning, is developed to get the reliable
and effective pseudolabels using the spatial-spectral features
extracted from Mlt-GCN. Afterward, the pseudolabels and
multiscale DIs are used to train our model with a specific
CD loss function. When our model is trained, the multiscale
DIs are fused for the final DI and change map.

B. Siamese Fully Convolutional Network
To fully extract multiscale spatial information from HRRS

images, we proposed a Siamese encoder and a pyramid-shaped
decoder.

The main structure of the Siamese down-sampling encoder
is a dual-branch weight-shared FCN, which is made up of
the first five convolution blocks of visual geometry group
(VGG) 16. For the first two blocks, each of them consists
of two convolution layers. The other three blocks are com-
posed of three convolution layers. Besides, there are four
max-pooling layers embedded between convolution blocks,
which are used to reduce the resolution of the input image
pairs. On account of the fact that our task is unsupervised,
the proposed FCN is pre-trained on a building extraction
dataset [58]. From the encoder, we can obtain five difference
feature maps (DFMs) {Fd

1, Fd
2 , Fd

3 , Fd0
4 , Fd0

5 } with various scales
through performing element-wise differencing on each scale.
Note that, Fd0

4 and Fd0
5 will further be input to Mlt-GCN to

generate new feature representations Fd
4 and Fd

5 . Note that the
selection of the building extraction dataset is not a limitation
of our method. Some other datasets, such as the Northwest-
ern Polytechnique University (NWPU) very high resolution
(VHR)-10 dataset [59], can be chosen to generate the pre-
trained parameters. Furthermore, the effect of pre-trained
parameters is discussed in the supplementary material.
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Fig. 2. Framework of pyramid-shaped decoder. It takes 5-scale feature maps
generated by encoder as input and generates dual-channel predicted DIs with
three different scales.

To further explore the multiscale information for our task,
we make use of a pyramid-shaped decoder. The specific
structure of the pyramid-shaped decoder is exhibited in Fig. 2.
The five DFMs {Fd

1, Fd
2 , Fd

3 , Fd
4 , Fd

5} can be fused up through
top-down dense connections which are good at integrating
semantic information. In specific, for each block in the
decoder, the corresponding DFM (except Fd

5 ) is channel-wisely
concatenated with feature maps from the previous decoder
blocks which have been processed by deconvolution
(i.e., up-sampling, convolution, and dropout) operations. Then,
the output is convolved by a 1 × 1 kernel with a stride
of 1 × 1. This process can be formulated as

Di = fConv
�
concat

�
Fd

i , Dprev
�
, WConv

�

Dprev = concat( fDConv(Di+1), . . . , fDConv(D4))
× i = 1, 2, 3, 4 (1)

where fConv(•) and fDConv(•) denote the convolution and
deconvolution, respectively, and concat(•) means the channel-
wise concatenation. Finally, the dual-channel predicted DIs
{P1, P2, P3} with three scales can be generated using
{D1, D2, D3} by a 1 × 1 convolution with a stride of 1 × 1.

C. Multiscale Dynamic GCN
Although the FCN encoder could extract multiscale fea-

tures from HRRS images through a series of convolutions,
it can only model short-range relations due to the limited
valid receptive field of convolution operations. The long-range
relationships within HRRS images are not fully exploited but
very important to CD tasks. To overcome this issue, Mlt-GCN
is introduced, and its framework is shown in Fig. 3.

Before explaining Mlt-GCN in detail, we first introduce
GCN briefly. In general, GCN can be regarded as a gener-
alization of CNN to the graph domain, which significantly
boosts mining relations among image features in the spatial
domain. In GCN, assume that there are N nodes, and we

Fig. 3. Process of multiscale dynamic GCN module.

use G = (V, E) to represent an undirected graph, where
V = {v1, v2, . . . , vN } indicates the nodes within G and E =
{ei j, i = 1, . . . , N, j = 1, . . . , N } denotes the edges between
the nodes of G. Also, the adjacency matrix A � RN×N is used
to describe the weights of edges between each pair of nodes.
In general, A can be calculated as

A =

�
exp

�
�� • dis

�
vi , v j

��
,

�
vi , v j

�
� N

0, otherwise
(2)

where � is an empirical parameter, dis(vi , v j) means the
distance between nodes vi and v j , and N indicates a neigh-
borhood set. To generalize the convolution to graph signals,
a degree matrix D � RN×N should be computed by Dii =�

j Ai j first. Then, the normalized Laplacian matrix L =
I � D�1/2AD�1/2 can be calculated, where I denotes the
identity matrix. What is more, the Laplacian matrix can be
further improved with a normalization trick, and its definition
is

�L = �D�1/2 �A�D�1/2 (3)

where �A = A + I and �Dii =
�

j
�Ai j . By doing so,

the propagation of a multilayer GCN can be formulated as

H(l+1) = �
�

�D�1/2 �A�D�1/2H(l)W(l)
�

(4)

where �(•) is the activation function, and H(l) and W(l)

illustrate the outputs and learnable weights of the lth layer,
respectively.

As shown in Fig. 3, the inputs of Mlt-GCN are Fdo
4 �

Rh4×w4×512 and Fdo
5 � Rh5×w5×512 which contain rich semantic

and spatial information. The outputs of Mlt-GCN include two
parts. First, two new DFMs Fd

4 � Rh4×w4×512 and Fd
5 �

Rh5×w5×512 are generated under the paradigm of GCN. Unlike
many existing GCN models, which regard parcels of images
(which can be obtained by an over-segment algorithm [60]) as
graph nodes, our Mlt-GCN model treats feature-map vectors
in Fdo

4 and Fdo
5 as graph nodes. Each feature-map vector

corresponds to a region within the input HRRS images. Both
short- and long-range relationships among diverse regions in
the input images can be explored by mining relations among
feature-map vectors within DFMs. Here, the feature-map vec-
tor mentioned above indicates the basic unit corresponding to
specific feature maps. Second, two new feature maps �F4 and �F5
are generated by a simple channel-wise attention scheme, con-
sisting of a global average pooling and two 1 × 1 convolutions.
In this way, �F4 and �F5 contain both the spatial and spectral



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Procedure of constructing adjacency matrix and spatial-spectral
feature matrix.

information, which are beneficial to the following pseudolabel
generation. Note that the reason why we only feed Fd0

4 and
Fd0

5 into Mlt-GCN is that compared with {Fd
1 , Fd

2, Fd
3} they

contain much more semantic information. Besides, processing
only Fdo

4 and Fdo
5 could reduce the computational cost.

For two new DFMs Fd
4 and Fd

5 , we first assume that two
adjacency matrices �A4 and �A5 have been obtained using Fdo

4
and Fdo

5 . Then, the Laplacian matrices �L4 and �L5 can be cal-
culated by (3). The new DFMs, which contain both abundant
semantic knowledge and long- and short-range relations, can
be obtained by a two-layer GCN. To illustrate the construction
process clearly, we denote the input feature maps as Fk �
Rhk×wk×512(k = 4, 5), and this process can be formulated as

Fd
k = fReLU

�
�Lk • fReLU

�
�Lk • Fk • Wk

1

�
• Wk

2

�
, k = 4, 5 (5)

where Wk
1, Wk

2 � R512×512 indicate learnable weights and
fReLU(•) means the rectified linear unit (ReLU) activation
function. Note that the word “dynamic” here means the input
data of Mlt-GCN are learnable.

In general, the adjacency matrix can be calculated by (2).
However, the proper distance metric and empirical parameter
� are hard to select. Consequently, we develop an adjacency
matrix construction method based on nonlocal block [61]
to calculate adjacency matrices using Fk . The flowchart is
exhibited in Fig. 4. First, Fk is convolved by a 3 × 3
convolution layer followed by ReLU(•) nonlinearity to produce
a new feature representation F�

k � Rhk×wk×64. This step can
decrease the number of parameters in the following computa-
tion and simulate the projecting process of traditional GCN,
which is beneficial to calculate the similarity between different
positions. Then, to measure the relationships among points in
the feature map, F�

k is reshaped into a pair of matrices �(Fk) �
Rhkwk×64 and �(Fk)T � R64×hkwk , where hkwk means the

number of pixels within Fk , and �(•) indicates the convolution
operation. Second, a global average pooling is performed on
Fk to integrate global information fully. Afterward, we can get
�̃(Fk) using two 1 × 1 convolutions (i.e., Conv2 and Conv3)
followed by the sigmoid function and diagonalization. This
process can be formulated as:

��(Fk) = diag(Conv3(Conv2(GlobalAvgPool(Fk)))). (6)

Note that the global average pooling and two 1 × 1
convolutions can be regarded as channel-wise attention, and
the diagonalization can be deemed as the identity matrix for
the adjacency matrix. Finally, �Ak � Rhkwk×hkwk is computed
via the following equation:

	Ak = �(Fk) × ��(Fk) × �(Fk)T . (7)

Through the construction method, the adjacency matrix �Ak
can be constantly updated in the training phase.

For two new feature maps �F4 and �F5, by applying the global
average pooling and 1 × 1 convolution operations to Fk, a one-
dimension vector with the same number of channels as Fk,
k = 4, 5 is obtained, which can be seemed like the weight
of each channel. Then, the spatial-spectral features �F4 and
�F5 are generated by assigning weights to the corresponding
channels so that the correlations among channels can be
inserted into Fk, k = 4, 5. This process can be expressed as

�Fk = fscale(Fk, � (Fk)) (8)

where fscale(•) means adding weight to every channel.

D. Dynamic Pseudolabel Generation Mechanism
To alleviate false and missed detection in the unsupervised

CD task, reliable pseudolabels are necessary [62], which could
provide the required “ground-truth” and help us complete the
model training. In this article, we propose a dynamic pseudola-
bel generation mechanism that consists of spatial-spectral
feature analysis and metric learning.

From the Mlt-GCN model, we obtain two feature maps
�F4 � Rh4×w4×512, �F5 � Rh5×w5×512 with spatial-spectral
information, where each value (�k(i, j) � �k, 0 < i < hk, 0 <
j < wk, k = 4, 5.) indicates the degree of change in the
corresponding area. Besides, to further distinguish changed
areas from unchanged ones, we divide pixels of the feature
maps into three classes according to their values with the
analysis of spatial-spectral features. The three classes are
un-changed class (�n), changed class (�c), and uncertain class
(�u). As described in [63], the probability density function
p(�k) of each element �k(i, j) can be modeled as a Gaussian
mixture distribution

p(�)= p(�k |�n)p(�n) + p(�k |�c)p(�c)+ p(�k|�u)p(�u)
(9)

where the conditional probability of each class is represented
as

p(�k |�l) =
1

�
2���l

exp




�
(�k � µ�l )

2

2� 2
�l

�

(10)




















