Tang, Xu und Zhang, Huayu und Mou, LiChao und Liu, Fang und Zhang, Xiangrong und Zhu, Xiao Xiang und Jiao, Licheng (2022) An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5609715. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3106381. ISSN 0196-2892.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
8MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9526855
Kurzfassung
As a fundamental application, change detection (CD) is widespread in the remote sensing (RS) community. With the increase in the spatial resolution of RS images, high-resolution remote sensing (HRRS) image CD tasks receive growing attention. The change information hidden in multitemporal HRRS images could help discover our planet comprehensively. In the current deep learning era, convolutional neural networks (CNNs) have become one of the most powerful tools for a wide range of RS tasks including HRRS image CD, due to their superb feature learning capacity. However, most of them need a large amount of labeled data to accomplish the CD process, which is challenging or even impractical in many RS applications. Also, given the limited valid receptive field, CNNs can only capture short-range context within HRRS images, which is probably not enough to fully explore change information from the images. To overcome these limitations, in this article, we propose an unsupervised CD method, termed GMCD, based on graph convolutional network (GCN) and metric learning. GMCD consists of a Siamese fully convolution network (FCN), a multiscale dynamic GCN (Mlt-GCN), and a pseudolabel generation mechanism based on metric learning. The Siamese FCN contains a Siamese encoder and a pyramid-shaped decoder, aiming to extract multiscale features and integrate them to generate reliable difference images (DIs). Mlt-GCN focuses on capturing the short- and long-range contextual patterns at feature map level to extract changed and unchanged areas completely. The pseudolabel generation mechanism aims to produce reliable pseudolabels (changed, unchanged, and uncertain) to help accomplish the model training in an unsupervised way. Experiments on four HRRS image CD datasets demonstrate that GMCD outperforms the existing state-of-the-art methods.
elib-URL des Eintrags: | https://elib.dlr.de/145757/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3106381 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seite 5609715 | ||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Feature extraction,Task analysis,Measurement,Semantics,Remote sensing, Image segmentation,Training | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Rösel, Dr. Anja | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 19 Nov 2021 09:25 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 01 Jan 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags