elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning

Tang, Xu und Zhang, Huayu und Mou, LiChao und Liu, Fang und Zhang, Xiangrong und Zhu, Xiao Xiang und Jiao, Licheng (2022) An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5609715. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3106381. ISSN 0196-2892.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
8MB

Offizielle URL: https://ieeexplore.ieee.org/document/9526855

Kurzfassung

As a fundamental application, change detection (CD) is widespread in the remote sensing (RS) community. With the increase in the spatial resolution of RS images, high-resolution remote sensing (HRRS) image CD tasks receive growing attention. The change information hidden in multitemporal HRRS images could help discover our planet comprehensively. In the current deep learning era, convolutional neural networks (CNNs) have become one of the most powerful tools for a wide range of RS tasks including HRRS image CD, due to their superb feature learning capacity. However, most of them need a large amount of labeled data to accomplish the CD process, which is challenging or even impractical in many RS applications. Also, given the limited valid receptive field, CNNs can only capture short-range context within HRRS images, which is probably not enough to fully explore change information from the images. To overcome these limitations, in this article, we propose an unsupervised CD method, termed GMCD, based on graph convolutional network (GCN) and metric learning. GMCD consists of a Siamese fully convolution network (FCN), a multiscale dynamic GCN (Mlt-GCN), and a pseudolabel generation mechanism based on metric learning. The Siamese FCN contains a Siamese encoder and a pyramid-shaped decoder, aiming to extract multiscale features and integrate them to generate reliable difference images (DIs). Mlt-GCN focuses on capturing the short- and long-range contextual patterns at feature map level to extract changed and unchanged areas completely. The pseudolabel generation mechanism aims to produce reliable pseudolabels (changed, unchanged, and uncertain) to help accomplish the model training in an unsupervised way. Experiments on four HRRS image CD datasets demonstrate that GMCD outperforms the existing state-of-the-art methods.

elib-URL des Eintrags:https://elib.dlr.de/145757/
Dokumentart:Zeitschriftenbeitrag
Titel:An Unsupervised Remote Sensing Change Detection Method Based on Multiscale Graph Convolutional Network and Metric Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tang, XuKey Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhang, HuayuKey Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mou, LiChaoLiChao.Mou (at) dlr.dehttps://orcid.org/0000-0001-8407-6413NICHT SPEZIFIZIERT
Liu, FangKey Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhang, XiangrongKey Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.dehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Jiao, LichengKey Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1109/TGRS.2021.3106381
Seitenbereich:Seite 5609715
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Feature extraction,Task analysis,Measurement,Semantics,Remote sensing, Image segmentation,Training
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Rösel, Dr. Anja
Hinterlegt am:19 Nov 2021 09:25
Letzte Änderung:01 Jan 2024 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.