Kondmann, Lukas and Toker, Aysim and Saha, Sudipan and Schölkopf, Bernhard and Leal-Taixé, Laura and Zhu, Xiao Xiang (2022) Spatial Context Awareness for Unsupervised Change Detection in Optical Satellite Images. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 5614615. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3130842. ISSN 0196-2892.
PDF
- Published version
6MB |
Official URL: https://ieeexplore.ieee.org/document/9627707
Abstract
Detecting changes on the ground in multitemporal Earth observation data is one of the key problems in remote sensing. In this paper, we introduce Sibling Regression for Optical Change detection (SiROC), an unsupervised method for change detection in optical satellite images with medium and high resolution. SiROC is a spatial context-based method that models a pixel as a linear combination of its distant neighbors. It uses this model to analyze differences in the pixel and its spatial context-based predictions in subsequent time periods for change detection. We combine this spatial context-based change detection with ensembling over mutually exclusive neighborhoods and transitioning from pixel to object-level changes with morphological operations. SiROC achieves competitive performance for change detection with medium-resolution Sentinel-2 and high-resolution Planetscope imagery on four datasets. Besides accurate predictions without the need for training, SiROC also provides a well-calibrated uncertainty of its predictions.
Item URL in elib: | https://elib.dlr.de/145630/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Spatial Context Awareness for Unsupervised Change Detection in Optical Satellite Images | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3130842 | ||||||||||||||||||||||||||||
Page Range: | p. 5614615 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Change Detection, unsupervised, optical images, multitemporal, urban analysis | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Kondmann, Lukas | ||||||||||||||||||||||||||||
Deposited On: | 19 Nov 2021 09:21 | ||||||||||||||||||||||||||||
Last Modified: | 19 Oct 2023 14:21 |
Repository Staff Only: item control page