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Abstract— Detecting changes on the ground in multitemporal
Earth observation data is one of the key problems in remote
sensing. In this article, we introduce Sibling Regression for
Optical Change detection (SiROC), an unsupervised method for
change detection (CD) in optical satellite images with medium
and high resolutions. SiROC is a spatial context-based method
that models a pixel as a linear combination of its distant neigh-
bors. It uses this model to analyze differences in the pixel and its
spatial context-based predictions in subsequent time periods for
CD. We combine this spatial context-based CD with ensembling
over mutually exclusive neighborhoods and transitioning from
pixel to object-level changes with morphological operations.
SiROC achieves competitive performance for CD with medium-
resolution Sentinel-2 and high-resolution Planetscope imagery on
four datasets. Besides accurate predictions without the need for
training, SiROC also provides a well-calibrated uncertainty of
its predictions.

Index Terms— Change detection (CD), multitemporal, optical
images, unsupervised, urban analysis.

I. INTRODUCTION

CHANGE detection (CD) is at the heart of many impactful
applications of remote sensing. Studying differences in

land cover and land use over time with remote sensing imagery
can shed light on urbanization trends [1], [2], ecosystem
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dynamics [3], surface water and sea ice trends [4], [5], and
damages through natural disasters [6]–[8]. Because of rising
spatial and temporal resolutions of Earth observation imagery,
the possibilities of multitemporal analysis have increased
significantly [9]. Combined with the open data policy of the
Copernicus program, it is, for example, possible to acquire
a Sentinel-2 image with 10-m resolution per pixel of any
region of interest on any continent every five days [10] free
of charge. Commercial providers of satellite imagery can even
offer almost daily coverage with high-resolution imagery for
large parts of the planet [11]. These trends emphasize the
increasing opportunities in monitoring Earth from space and
the relevance of CD as a field within remote sensing. Obtaining
labeled data for CD, however, is costly in terms of time and
effort, especially at scale. Therefore, a large focus of attention
in the design of CD algorithms is unsupervised methods that
do not require ground truth [12].

The applicability of unsupervised CD methods in mul-
tispectral satellite images varies depending on the spatial
resolution of input images. For very-high-resolution (VHR)
imagery with a spatial resolution up to 0.5 m, deep-learning-
based methods tend to be in general preferable because of
their elaborate capacity to model spatial context [12] although
most of the work in this area focuses on supervised meth-
ods [13]–[18]. Since, for VHR imagery, an object, such as
a building, consists of a number of pixels, modeling spatial
context is essential to provide accurate unsupervised change
segmentations. Saha et al. [12] introduce deep change vector
analysis (DCVA), a VHR CD framework that combines ideas
from image differencing with feature extraction based on pre-
trained neural networks. DCVA has also been combined with
self-supervised pretraining of the feature extractor specifically
for remote sensing images [19]. MSDRL [20] is a scale-driven
unsupervised method that uses deep feature extraction to
obtain a pseudoclassification of change superpixels. Superpix-
els with high certainty pseudolabels are then taken as input to
train a support vector machine, which eventually classifies the
uncertain superpixels. Such preclassification schemes where
pseudolabels are obtained based on another method have also
been presented in conjunction with methods for unsupervised
CD in synthetic aperture radar images [4], [21], [22], such
as PCANet [23], [24]. Gong et al. [25] introduced modeling
the difference image with a generative adversarial network
(GAN). While the deep learning methods above were primarily
designed for high-resolution imagery, some of them can be
applied to medium-resolution imagery as well. In the case of
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DCVA, there also exists a variant adjusted to the spatial and
spectral scales of Sentinel-2 [26].

For medium-resolution CD, nondeep learning methods
based and improved on change vector analysis (CVA) can still
compete. CVA takes the difference of radiometric values or
features derived from it over time [12] and applies a threshold
to this difference image. Examples of features that have been
derived from radiometric values as input for image differenc-
ing are vegetation indices [27] or tasseled cap transformation
features [28]. Otsu thresholding [29] has been shown to be
effective for thresholding the difference image [30] although
a variety of approaches exist [31]–[33]. Beyond binary CD,
the signal in the CVA difference image can also be used to
uncover the type of change [34], [35].

CVA-based methods can still be insightful especially with
medium resolution because the size of objects in these images
is typically assumed to be similar to the spatial resolution
of a pixel. However, extensions of CVA still fall short of the
deep-learning-based DCVA for unsupervised CD on the OSCD
benchmark. Still, the relative performance of traditional meth-
ods based on CVA improves with medium-resolution imagery
compared to higher resolutions. More recent versions of CVA
that can also be applied to higher resolution imagery tend to
include close spatial context of pixels to some extent. Parcel
CVA (PCVA) includes surrounding information of pixels by
independent hierarchical segmentation at several scales [36].
Robust CVA (RCVA) improves on potential coregistration
errors in the CVA framework by replacing a point in the
difference image with the difference to a neighboring pixel
if the difference to this neighbor is smaller [30]. Object
CVA (OCVA) computes histograms of object sizes in an image
and incorporates this information into a CVA framework [37].
Image differencing methods have also been successfully com-
bined with morphological operations that allow transitioning
from the pixel to the object level [38].

Although neighboring pixels are somewhat included in the
change analysis of a pixel in these extensions of CVA, the
spatial extent of incorporated information is small compared
to the effective window of sequential convolutional operations
in neural networks. Neighborhood in this context is defined not
only as the immediate neighbors to a pixel of interest but also
its larger spatial context up to a distance measure. The distant
neighborhood of a pixel may help to identify changes because
it is also affected by local trends in the image but unaffected
by the change itself. For example, consider an explosion of
a building between preimage and postimage, such as in the
Beirut dataset used in the following. Analyzing the distant
neighborhood allows to separate the actual change (destroyed
building) from local trends, such as dust and dirt, which
remains on surrounding buildings stirred by the explosion.
However, the use of distant neighborhood context has only
found limited application in CD thus far. This is particularly
surprising since applications of image differencing in other
domains, such as astronomy emphasize the importance of the
relation of a pixel to its neighborhood [39].

Wang et al. [39] present the causal pixel model (CPM) for
the study of multitemporal Kepler data that is used to spot
transiting exoplanets in front of distant stars observed by the

space telescope. The method is also more generally known as
half-sibling regression (HSR) [40] Their task is conceptually
related to a CD problem in remote sensing since it is also
centered around spotting changes in multitemporal reflection
intensities, which should be unrelated to the acquisition con-
ditions. In their case, these deviations hint toward a transient
object in front of a distant star rather than a change on the
ground, but the fundamental principle is similar. They solve
this task by modeling pixels as a function of their distant
neighbors. With this model, it is possible to obtain a prediction
for pixels in subsequent time steps based on their distant
neighbors and compare the prediction to the actual value of
the pixel. The size of the difference between predictions of
pixels and their actual values is interpreted as the strength of
the change signal.

HSR is related to the application of local binary pat-
terns [41] for CD in more traditional image recognition
problems. Bilodeau et al. [42] design a method based on
local binary similarity patterns (LBSPs) to separate the image
background from changes in multitemporal images. In their
method, a binary similarity measure is computed between a
pixel of interest and its closest neighbors within an image.
If the binary similarity pattern updates notably between
images, this is considered to be a change signal. A version
of LBSPs has also been applied to CD in remote sensing
where multitemporal images are split into overlapping blocks,
and LBSPs of these blocks are compared across time [43].
Similarly, the graph structure of image patches across time
has been used for homogenous and heterogenous CD [44].
The shared principle between LBSP and HSR is the approach
to compare a pixel to its neighborhood and inspect how this
relationship changes over time to discover potential changes.
However, HSR relies mostly on distant neighborhood informa-
tion rather than a small set of close neighbors and models this
relationship explicitly to obtain a prediction for subsequent
time periods.

One key property of HSR is the fact that it is by design com-
parably robust to registration errors and varying acquisition
conditions for a given sensor [39]. This is because variations
in the acquisition conditions can also affect distant neighbors
in an image, whereas actual changes at the pixel level should
be independent of distant context. Changing acquisition con-
ditions and registration errors, however, are two of the primary
sources of false positives (FPs) in CD [45]. Since HSR deals
comparably well with these issues, it may work especially well
for CD in remote sensing time-series data. In this article, we,
therefore, apply HSR for CD in remote sensing. When we
know from astronomy that distant spatial context can improve
resilience against varying acquisition conditions, this might be
particularly helpful in remote sensing CD.

We modify HSR in two major ways to apply it as SiROC for
CD in remote sensing. First, we design an ensemble version
of HSR based on mutually exclusive neighborhoods. Second,
we make use of morphological operations to transition from
pixel-level changes to object-level changes. SiROC is tested
for urban CD in medium-resolution images on the Onera
Satellite CD Dataset (OSCD) and high-resolution images from
the Beirut Harbor Explosion of 2020 [Beirut Harbor Explosion
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Dataset (BHED)]. Outside the urban context, we test SiROC
on the Barrax Agriculture dataset and the Lamar Alpine
dataset. Our main contributions are threefold.

1) We introduce SiROC, a robust method for unsupervised
CD in optical remote sensing that combines ideas from
HSR with ensembles over mutually exclusive neighbor-
hoods and morphological operations.

2) SiROC achieves competitive performance for medium-
and high-resolution unsupervised CDs with optical
images.

3) SiROC also returns a built-in, well-calibrated uncertainty
score with its change segmentation. The uncertainty
measure allows distinguishing the predictions of the
model by confidence, which is an important feature for
pseudolabeling or detecting distribution shift.

II. METHOD

A. Half-Sibling Regression Image Differencing

The foundation of our method is HSR, which was origi-
nally developed for time-series analysis of the Kepler data in
astronomy [39], [40], [46], [47]. Fig. 1 displays the intuition
of HSR and how it is applied to obtain signals of changing
pixels across time in three steps.

First, HSR models the pixel value of a star at time t as
a linear combination of the pixel values of many other stars
from the distant neighborhood of the pixel [see Fig. 1(a)].
The result of this first step is a linear coefficient for every
included neighborhood pixel. In the second step [see Fig. 1(b)],
predictions for the pixel at time t + 1 are obtained with HSR
based on the neighboring pixels at t + 1 and the respective
linear coefficients from step 1. If steps 1 and 2 are executed
for the whole image, there is a prediction for any pixel at
t +1 and its actual value. The predicted image at t +1 is then
subtracted from the actual image value to obtain a change
signal for every pixel [see Fig. 1(c)]. Intuitively, one expects
a change in the pixels where the predictions based on the
pixel’s relation to its neighborhood in the past divert from the
actual realization of the pixel. In the following, we elaborate on
the formal definition of the three steps described. We restrict
our description of HSR to the case of two time periods for
simplicity since this is how we apply the method to remote
sensing as well.

Step 1: Let Ix,y,t be a pixel in a single-channel, 2-D image
time series (I ) at time t with coordinates (x, y). HSR models
the pixel Ix,y,t as a linear combination of a set of distant
neighbors N from I . The neighborhood set has the points
Ii, j,t as elements such that (i, j) ∈ Nx,y

Ix,y,t =
∑

(i, j)∈Nx,y

βi, j,x,y Ii, j,t + �x,y,t (1)

where βi, j,x,y is the coefficient of neighbor Ii, j,t to model
the point of interest Ix,y,t . �x,y,t is the residual of the model.
Neighbors are chosen from the distant neighborhood because
they might be subject to the same noise as the pixel of interest
when they are selected to close to it. Wang et al. [39] require
that an eligible neighbor has a distance of at least 20 pixels
from the pixel of interest to be considered. This ensures that

the pixel of interest and the chosen neighbors have practically
no overlap in stellar illumination. The number of neighboring
pixels considered is generally large, and Wang et al. [39]
select 4000 neighboring pixels in their original proposal of
HSR to model one pixel of interest for Kepler data. Given the
high temporal density of observations for each pixel (every
30 minutes) in Wang et al. [39], this is still solvable because
the number of observed time periods exceeds the number of
neighboring pixels used.

However, in the bitemporal case, where only one period is
used for fitting, there are many potential combinations of β,
which solves (1). We derive β as the closed form solution
of the least-squares problem. It is a function of the pixel of
interest Ix,y , the respective neighbor Ii, j , and the quadratic
sum of all neighbors Ii �, j �

βi, j,x,y = Ii, j,t∑
(i �, j �)∈Nx,y

I 2
i �, j �,t

Ix,y,t . (2)

Step 2: With the coefficients obtained in step 1, Ix,y,t+1 can
be predicted as

Îx,y,t+1 =
∑

(i, j)∈Nx,y

βi, j,x,y Ii, j,t+1. (3)

With the expression for β from (2), (3) can be rearranged
to

Îx,y,t+1 =
∑

(i, j)∈Nx,y
Ii, j,t+1 Ii, j,t∑

(i, j)∈Nx,y
I 2
i, j,t

Ix,y,t ≡ gt+1 Ix,y,t (4)

where gt+1 resembles a growth rate of the sum of pixel values
in the selected neighbors from t to t + 1. In essence, the
assumption is that, if the pixel values around Ix,y,t increase
by a factor gt+1 and no changes occurred at this location,
Ix,y,t+1 should be close to Ix,y,t gt+1. We can circumvent the
explicit calculation of beta and directly obtain Îx,y,t+1 based
on (4), which is computationally efficient.

Step 3: The difference between Ix,y,t+1 and Îx,y,t+1 is taken
as the change signal for pixel Ix,y between t and t + 1

Ix,y,t+1 = Îx,y,t+1 + �x,y,t+1 . (5)

After obtaining Ix,y,t+1 for all (x, y) ∈ It+1, the residual is
given as the difference of the image matrices

�t+1 = Ît+1 − It+1. (6)

Note that this is slightly different from the standard appli-
cation of image differencing in CVA in multitemporal remote
sensing. We do not directly take the difference of the image
vectors at t and t+1. Instead, we predict how the image would
have looked like in t + 1 if the local neighborhood relations
persisted. Then, we use this predicted image as input for image
differencing with the actual image in t + 1. The extension of
HSR to images with several channels is straightforward as one
can directly sum the absolute values of � for each channel
to incorporate HSR information from all channels. Let �t+1,c

be the residual of channel c of a multispectral image with C
channels. Then, the aggregated chance signal can be computed
as

�t+1 :=
C∑

c=1

|�t+1,c|. (7)
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Fig. 1. HSR. (a) Set of neighbors is fit to a pixel of interest as a linear combination at time t . (b) At t + 1, the pixel values of the neighbors are used
together with the coefficients obtained at time t to predict the pixel of interest in t + 1. (c) Predicted pixel values are compared with the actual pixel values
at t + 1 to obtain a change signal.

Algorithm 1 SiROC
Input: It , It+1, s, n_max,e_start
Output: Binary Change Segmentation
1: e = e_start, n = e_start + s
2: Uncertainty_CM = zeros_like(It)
3: while n < n_max do
4: for (channel in channels) do
5: for (pixel in It ) do
6: Apply HSR(n, e) to get Ît+1

7: end for
8: Channel_Difference_Image = Ît+1 − It+1

9: end for
10: Diff_Image = Sum(|Channel_Difference_Images|)
11: Binary_CM = Otsu_Thresholding(Diff_Image)
12: Binary_CM_Object = Morph_Profile(Binary_CM)
13: Uncertainty_CM = Uncertainty_CM +

Binary_CM_Object
14: n = n + s
15: e = e + s
16: end while
17: Final_Segmentation = Threshold(Uncertainty_CM)

B. HSR for Earth Observation Data (SiROC)

We improve and adapt the standard HSR image differencing
model to apply it effectively for CD in remote sensing as
Sibling Regression for Optical CD (SiROC). Algorithm 1
outlines SiROC in pseudocode. In summary, there are two
major differences between SiROC and HSR image differenc-
ing. First, we redesign the notion of included and excluded
pixels in the neighborhood selection to create an ensemble
version of HSR over mutually exclusive neighborhoods. This
does not only improve performance but also allows us to
obtain an uncertainty along with the prediction. The rationale
of splitting neighborhoods by distance is to inspect trends at
different distances separately instead of pooling the trends
together. For example, two trends at different spatial scales
might offset each other when pooling them although both
may be a signal for change. Second, we combine HSR with
morphological profiles to move from pixel- to object-level

changes since changes in remote sensing typically occur at
the object level.

1) Ensembling: The starting point for SiROC is applying
HSR to It to obtain Ît+1 based on a set of neighboring pixels.
We use all pixels that have a distance of at least e but at most
n rows or columns from the pixel of interest. Graphically, this
corresponds to all points in a square with width 2n and Ix,y,t

in its center, which are not in the smaller square with width
2e around Ix,y,t . Formally, a pixel Ix� ,y�,t is included in the set
of neighbors for Ix,y,t if

e < max
{∣∣x � − x

∣∣,
∣∣y � − y

∣∣} ≤ n. (8)

With Ît+1, a channel-level difference image is obtained by
taking the difference Ît+1 − It+1. The absolute value of the
change signal is summed across the channels. We apply Otsu-
thresholding [29] to the resulting difference image that has
been successfully used for thresholding difference images in
CD before [30]. Furthermore, the evaluation of competing
methods is also based on this thresholding approach. This
allows for comparing relevant methods in a fixed setting.
Nevertheless, Otsu-thresholding is a design choice here with
a variety of alternatives that can also be used in conjunction
with SiROC, including the T-point method [48], the Rosin
method [49], or the expectation–maximization (EM) algo-
rithm [50], [51].

The result of the thresholding step is a binary segmentation
of the difference image on the pixel level. However, in remote
sensing applications, changes such as the construction of roads
or buildings tend to occur at the object level. This is why
object-based methods often tend to be superior for these
applications [52]. We rely on morphological profiles that are an
established tool to bridge the gap between pixel-level change
segmentations and the object level [53].

2) Morphological Profile: A morphological profile is the
sequential application of morphological opening and closing
to an image [53]. We employ morphological opening and
closing at one spatial filter size p. Intuitively, morphological
closing helps to fill in missed pixels in detected change
objects as changed. On the other hand, morphological
opening removes spurious FPs when there are no other
changes around them. After obtaining an object-level change
segmentation for a given neighborhood size n and exclusion
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window e, we repeat the procedure and use new neighbors that
are further away than the current set. Both n and e increase
by the same added factor s. In the next iteration, the previous
neighborhood window becomes the exclusion window, and
a new binary segmentation based on more distant neighbors
is obtained. This procedure is repeated until a maximum
neighborhood size is reached. The number of models F is
given as F = ((n_ max −n_ min)//s) + 1. Every model in
the ensemble classifies each pixel either as change (1) or no
change (0), which can be interpreted as a voting mechanism
among models. Voting mechanisms across spatial scales [54]
or different bands [26] are a common aggregation mechanism
in CD. The number of votes per pixel ranges between 0 and F .

3) Majority Voting: The matrix of votes per pixel can be
visualized as a heatmap of agreement between different sets of
neighbors if a change occurred. This also directly transports a
measure of uncertainty embedded in SiROC. If a pixel has no
or the maximum number of votes, the agreement is high, and
the method is confident in its prediction. If the number of votes
is split, the model shows low confidence in its prediction for
this point. We threshold these votes with a predefined voting
share 0 ≤ v ≤ 1 that is required to classify a pixel as changed.
v is the sensitivity of our model toward change. The choice
of v contains a tradeoff between objectives. With a higher v,
the number of false negatives rises but FPs decline (and vice
versa). Since all models are equally weighted in the voting
process, the importance of a single neighbor is decreasing in
its distance to the pixel of interest. This is because the number
of neighbors used per model is increasing in n. The underlying
assumption is that pixels closer to the point of interest carry
more information about its potential change. This assumption
is domain-specific to Earth observation and stands in contrast
to the idea of HSR in astronomy where there is no weighting
based on distance. The application of the voting threshold is
the last step of SiROC to obtain the final change segmentation.
The voting matrix is normalized by the number of models
before the percentage threshold is applied.

To summarize, SiROC has the following hyperparameters.
1) Maximum Neighborhood Size: n_max.
2) Initial Exclusion Window: e_start.
3) Step Size of Ensemble: s.
4) Filter Size of Morphological Operations: p.
5) Voting Threshold: 0 ≤ v ≤ 1.
The initial size of the neighborhood window n_start is given

as e_start + s.

III. EXPERIMENTS AND RESULTS

Section III-A describes the datasets used to assess the per-
formance of SiROC and competing methods. The competing
methods used as a benchmark and the evaluation criteria are
described in more detail in Section III-B. The results on
OSCD, BHED, the Agriculture Dataset, and the Alpine Dataset
are presented in depth in Sections III-C–III-F, respectively.

A. Description of Datasets

1) Onera Change Detection Dataset: OSCD is a benchmark
for bitemporal urban CD based on multispectral Sentinel-2

images [55]. It contains manual annotations of binary changes
for 24 cities across the globe where 14 are used for training
and 10 for testing. The labels focus on urban changes, such
as newly constructed buildings, and natural changes, such as
sea-level rise or differences in vegetation, are not annotated.
The two images per city are selected to be cloud-free and are
generally taken about one to three years apart. While there
are 13 bands available in Sentinel-2 images, we restrict our
focus to the RGB channels here. Although SiROC is able to
handle channels outside of the visible spectrum as well, our
experiments show that the inclusion of the NIR band does not
add value in the urban applications considered here. This may
be different in vegetation monitoring where NIR bands tend
to be more insightful. Spatial bands beyond RGB and NIR
do not have a spatial resolution of 10 m and are, therefore,
excluded as well.

2) Beirut Harbor Explosion Dataset: On August 4, 2020,
a devastating explosion of large amounts of ammonium nitrate
occurred in the port of Beirut in Lebanon. It led to over
200 deaths and left more than 300 000 people homeless
because of heavy damages to buildings in the city.1 We collect
a pair of cloud-free Planetscope images with 3 m per pixel
resolution on August 1 and 5 before and after the explosion.
We combine these images with ground truth on destroyed
buildings provided by the Center for Satellite Based Crisis
Information (ZKI), German Aerospace Center.2 The building
destruction map is based on manual annotation of very-high
resolution images and field reports on the ground. Note that the
annotations contain building destruction rather than building
damage. Therefore, partial damages to buildings that withstood
the explosion are not included. With this dataset, we aim to
test the applicability of SiROC not only in medium but also in
higher resolution images in problems where fast and accurate
annotations are essential.

3) Agriculture Dataset: To test SiROC also outside the
urban domain, we include two other test datasets from
Saha et al. [12] as reference points. The first one, the Agri-
cultural dataset, is a scene with bitemporal Sentinel-2 images
from July 2015 over Barrax, Spain, with 600 × 600 pixels
in size. Between the two images is a time period of 10 days
between which agricultural field activity changed notably. The
reference map was manually annotated by Saha et al. [12].

4) Alpine Dataset: The second dataset consists of pre and
post Sentinel-2 images of a fire in an alpine region close
to Trento, Italy, in spring 2019. A variety of other seasonal
vegetation trends, such as ice and snow, complicate this
dataset. The scene has a size of 350 × 350 pixels with ground
truth annotated manually by Saha et al. [12].

B. Competing Methods and Criteria

We compare our results to a variety of state-of-the-art
unsupervised methods for optical CD in remote sensing. Since
SiROC needs no training and does not rely on pretrained
neural networks, its primary group of comparison consists of
other image differencing-based methods. This makes SiROC

1https://en.wikipedia.org/wiki/2020_Beirut_explosion
2https://activations.zki.dlr.de/en/activations/items/ACT148.html
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fast compared to deep learning methods with comparable
speed to traditional methods. We include several frameworks
that improve on classical CVA. RCVA [30] incorporates close
neighborhood information to make CVA more robust against
misregistration. PCVA [36] uses CVA of multilevel parcels to
improve on CVA. DCVA is based on deep feature extraction
with a deep neural network pretrained on imagenet [12]. While
DCVA was originally developed for high-resolution images,
it is a resolution-agnostic framework relying on deep feature
extraction from RGB channels. We also include a version of
this method that we call DCVAMR specifically adjusted for
medium-resolution, multispectral Sentinel-2 imagery [26] for
the OSCD dataset. For BHED, we include DCVA, RCVA,
and PCVA as baselines as DCVAMR is not capable of han-
dling Planetscope input channels. The most recent advance-
ment in unsupervised CD for high-resolution imagery is
Saha et al. [19] who employ self-supervised pretraining on
remote sensing images in combination with a DCVA frame-
work. We call this refined version of DCVA “SSDCVA” and
include it as the primary baseline besides general DCVA for
BHED.

In line with previous evaluations on OSCD [26], [55],
we analyze the performance of SiROC against the state-
of-the-art binary change segmentation based on specificity
and sensitivity. Specificity is defined as the number of true
positives (TPs) over the sum of TPs and FPs: specificity =
TN/(TN + FP). Sensitivity is the number of TP over the sum
of TP and false negatives: sensitivity = TP/(TP + FN). This
criterion is also known as recall. A method that is sensitive
toward changes has a high sensitivity but a low specificity
(and vice versa). A superior method should balance these
objectives and evaluate better in both criteria. To further
elaborate on the balance of change and no change class,
we also report precision = TP/(TP + FP) and F1-score =
(2 ∗ Precision ∗ Recall)/(Precision + Recall).

C. Results on OSCD

1) Parameters: We tune the parameters of SiROC on the
OSCD training set resulting in the following parameter spec-
ifications.

1) Maximum Neighborhood Size: n_max = 200.
2) Initial Exclusion Window: e_start = 0.
3) Step Size of Ensemble: s = 8.
4) Filter Size of Morphological Operations: p = 5.

The maximum neighborhood size is 200 with stepsize 8.
Contrary to the original idea of HSR in astronomy, we do not
find it to be optimal to exclude direct neighbors of the pixel
of interest from the analysis resulting in an initial exclusion
window of zero. While neighboring pixels may be subject
to the same kind of object-level change on the ground, they
still can contribute important information if their weight is
moderate. We find the best results with morphological opening
and closing with a filter size of 5. We do not tune the voting
threshold because this parameter does not influence the change
signal directly but rather how the method balances FPs and
false negatives.

TABLE I

QUANTITATIVE RESULTS’ OSCD TEST SET

2) Quantitative Results: Table I reports specificity and
sensitivity scores of SiROC and competing methods on the
OSCD test set. Scores are averaged on the city level. SiROC
with a voting threshold of v = 1/2 achieves a specificity of
88.31% with a sensitivity of 70.71% and 24.80 % precision
and 36.72% F1-score. This is a high score in all four categories
by a significant margin. The difference to DCVAMR is about
6–13 percentage points (p.p.) depending on the category.
DCVA achieves a sensitivity that is slightly below but close to
SiROC but lacks behind in specificity, sensitivity, and F1-score
by more than 10 p.p. Compared to the best results of methods
without deep-learning-based feature extraction, SiROC gains
about 12 p.p. in specificity, 7 p.p. in sensitivity, 12 p.p.
in precision, and 15 p.p. in F1 on RCVA.

To understand the origin of the performance difference to
the previous state of the art in more detail, we provide two
ablation scores of SiROC. First, we remove the morphological
operations in SiROC. While morphological profiles help to
transition to an object-level change mask, SiROC still exceeds
previous unsupervised performance without them. No MP
performance improves by 2 p.p. in specificity and 5 p.p.
in sensitivity versus DCVAMR and by 4 p.p. in specificity
and 1 p.p. in sensitivity versus DCVA. The resulting F1-score
is 3–4 p.p. higher than deep-learning-based methods and
5–10 p.p. higher than traditional methods here. To evaluate
the effectiveness of ensembling, we also provide a score for a
vanilla HSR with the same neighborhood size and no exclusion
window. The Vanilla HSR performs slightly better but in the
range of DCVA and DCVAMR with a specificity of 79.45%
and a sensitivity of 70.24%. The F1-score is about 1 p.p. lower
without ensemble voting.

Therefore, the majority voting mechanism is an effective
tool to extract a more granular signal from the general HSR
predictions. Furthermore, the use of wide spatial context
pioneered in astronomy is advantageous for CD in remote
sensing as well. In summary of Table I, SiROC sets a new
state-of-the-art unsupervised CD in medium-resolution images
on OSCD. Even without morphological filters, the method still
notably outperforms previous scores, which points to a strong
signal for change information in the original HSR method and
the effectiveness of the majority voting mechanism. Combined
with ensembling over different neighborhoods and morpholog-
ical profiles, this exceeds previous quantitative results on the
OSCD dataset.
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3) Qualitative Results: The edge of SiROC compared to
other unsupervised methods in the quality of change anno-
tations for medium-resolution imagery is also visible when
inspecting the predictions for specific scenes. Fig. 2 dis-
plays exemplary change masks for Las Vegas. For SiROC,
a threshold of v = 1/2 was used to obtain the images with a
specificity of 95.28%, a sensitivity of 78.75%, and a precision
of 58.14% for this scene. Fig. 2(a) visualizes the confidence
of SiROC in the change propensity of a pixel as a heatmap
from dark purple (0% votes) to yellow (100% votes). When
comparing this to the ground truth on the bottom right, one
can see that change confidence is strongly associated with the
occurrence of a change. Fig. 2(b) shows the binary change
map after applying the threshold to the uncertainty map.
Not only does SiROC pick up on the changed areas in the
image but it also fits the shapes of changing buildings fairly
well. The visual similarities between Fig. 2(b) and (h) are
striking, especially compared to the other segmentations of
competing methods. Also, before applying the morphological
operations, SiROC identifies the areas of interest in the image
well although the predicted mask is naturally slightly more
spurious. The morphological operations help to remove these
spurious changes, but the change signal in the predictions is
in line with the ground truth [see Fig. 2(c)]. DCVAMR is
generally able to discover the changing regions of an image but
struggles to identify the shapes of changing objects and rather
fits round blobs [see Fig. 2(d)]. DCVA tends to discover large
changes and overestimate their size, whereas smaller changes
go undetected [see Fig. 2(e)]. This might be related to the
fact that DCVA was originally designed for high-resolution
optical imagery in which building changes are larger in terms
of pixel size. This is in line with the fact that DCVAMR,
which is explicitly adjusted for Sentinel 2, tends to fit the size
of changes better even though it also struggles with change
shapes. PCVA and RCVA seem to extract building footprints
rather than building changes here, which leads to overcrowding
of the segmentation mask.

A similar picture emerges when inspecting results for Dubai
in Fig. 3, which is a slightly more complex scene since
the shapes of changes differ widely. SiROC detects changing
regions again well but seems to struggle with the shape of
changes in the upper part of the image. The newly constructed
road is identified well. Consequently, the quantitative scores on
this scene are slightly lower compared to the Las Vegas Scene
with 86.87 % specificity, 76.61% sensitivity, and 39.14%
precision. The struggles of the competing methods are similar
to the Las Vegas Scene: DCVAMR fits round shapes to any
kind of change [see Fig. 3(d)], DCVA overestimates the size
of large changes [see Fig. 3(e)], and PCVA extracts a spurious
change map that rather looks, such as building footprints [see
Fig. 3(f)]. Therefore, the quality inspection of visual results
confirms that SiROC obtains superior results on OSCD.

4) Uncertainty Estimation: To properly analyze if the con-
fidence of SiROC also corresponds to well-calibrated uncer-
tainties, we test this with calibration curves. For this, we split
pixels into subsets based on the SiROC confidence and analyze
the respective performance for a level of confidence. If the
performance of SiROC is in principle increasing with the

TABLE II

SENSITIVITY TO HYPERPARAMETERS (OSCD TRAINING SET)

TABLE III

THRESHOLDING CHOICE (OSCD TRAINING SET)

confidence, the uncertainty levels, in fact, correspond to the
certainty of the prediction that the model has. Fig. 4 plots these
confidence–performance curves for four cities in the OSCD
test set. For all four cities, we see that model precision is
nondecreasing in the confidence of the SiROC. Most of the
time, the prediction increases notably in the confidence, which
means that SiROC not only performs well for this task but also
returns well-calibrated uncertainties as part of its prediction.

5) Sensitivity to Hyperparamenters: To allow effective use
of SiROC in practice, we offer a sensitivity analysis of the
hyperparameter choice on OSCD along with recommenda-
tions for this choice in other applications. This sensitivity
analysis is executed on the training set to avoid multiple
evaluations on the test set. The results are shown in Table II.
While the performance of the method naturally varies with
the choice of hyperparameters, SiROC looks fairly robust
against its hyperparameter choices. The first row gives the
training set performance based on the selected parameters
described in this section as a comparison point. Varying
only the maximum neighborhood N_max, the number of
rows excluded e_start and the stepsize s at the selected
parameter specification influences the training performance
marginally, at most. For all three parameters, the average speci-
ficity decreases, while average sensitivity increases slightly.
These three parameters essentially navigate how to group and
prioritize neighborhoods. Excluding close context (e_start),
including more distant context (N_max), and aggregating
neighborhoods into larger groups (s), therefore, do not seem
to matter notably in practice to achieve good performance.
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Fig. 2. Qualitative Comparison OSCD—Las Vegas. This figure visualizes the number of change votes per pixel in SiROC (a) and the corresponding binary
predictions after (b) and before morphological operations (c). Competing models are visible in (d)–(g) and the ground truth in (h). SiROC predicts change
regions and shapes of the ground truth well while competing methods struggle either with identifying the shapes visible in (d) and (e) or the areas of change
in (f) and (g) for the Las Vegas Pair.

Fig. 3. Qualitative comparison OSCD—Dubai. The structure is identical to Fig. 2, but predictions and ground truth are presented for Dubai. Also, for this
scene, SiROC predicts changing areas and their shape comparably well even. In contrast, competing methods miss the shapes of changing areas, such as the
street in the lower part of the image or struggle to detect relevant regions.

The performance is slightly more sensitive toward the size
of the morphological profile (p) where average specificity
increases marginally and sensitivity drops by 9 p.p. if this is

varied leaving other parameters untouched. Similarly, when
varying all four parameters simultaneously in 75 random
draws, performance drops with a difference of about 8 p.p.
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Fig. 4. Confidence–performance plots on four cities of the OSCD dataset. On the x-axis, points in the image are sorted into buckets by SiROC confidence.
For each of these buckets, the performance is estimated separately. Since performance is generally nondecreasing in confidence, the uncertainty measure is
considered well calibrated.

in sensitivity with similar specificity. In terms of magnitude,
this performance drop is only a fraction of the difference
between SiROC and its closest competitors on the OSCD test
set. This implies that SiROC would likely outperform com-
peting methods on this dataset for a variety of hyperparameter
choices. To understand the sensitivity of the results to different
thresholding techniques, we also benchmark SiROC based
on the selected hyperparameters with EM-based threshold-
ing [50], [51] and triangle thresholding following the OpenCV
implementation.3 Results are presented in Table III. While the
results are similar, the different techniques balance the tradeoff
between FPs and false negatives in a slightly different fashion.
This may be relevant to consider for applications of SiROC
in practice where this balance plays an important role.

For potential applications of SiROC in the future, we sug-
gest using the obtained parameter combination initially. This
provides a starting point for further analysis in different
contexts. Since the performance seems to be comparably sus-
ceptible to the size of the morphological profile, this parameter
may deserve special attention during tuning. In the following,
results on the remaining three datasets are obtained with this
parameter combination, which was the result of tuning on
OSCD. Even though this may not necessarily give the best
possible performance, we aim to validate that SiROC achieves
convincing results in other applications without fine-tuning on
single scenes.

3https://docs.opencv.org/4.5.3/d7/d1b/group__imgproc__misc.html

TABLE IV

QUANTITATIVE RESULTS BEIRUT EXPLOSION

D. Results on BHED

1) Quantitative Results: Table IV displays specificity, sensi-
tivity, precision, and F1-scores on the scene. Generally, scores
on BHED are higher than on OSCD since the changes are
centered around the same area and have similar shapes. SiROC
with default parameters achieves a specificity of 92.01% and
a sensitivity of 83.38%. DCVA achieves a similar specificity
with 91.87% but falls short in terms of sensitivity by about
4 p.p. with a score of 79.85%. SSDCVA places slightly
below DCVA with a specificity of 88.25% and a sensitivity of
81.08%. SiROC beats SSDCVA by about 3 p.p. in sensitivity
and about 2 p.p. in sensitivity. PCVA and RCVA clearly fall
behind SiROC and also DCVA-based methods. F1-score and
precision results confirm the previous impressions with a gap
of 12–20 p.p. in F1 and 9–13 p.p. in precision, respectively.
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Fig. 5. Qualitative comparison Beirut explosion. This figure shows the Planetscope image pairs (a) and (b), change ground truth (c), and model predictions
(d)–(i) for the Beirut explosion scene. SiROC with main parameters (d) identifies the area of destroyed buildings around the epicenter correctly with few
FPs although the shapes are lacking some granularity. Increasing the size of morphological operations improves accuracy but tends to fit one large blob with
missing building shapes (e). Excluding morphological operations increases FPs although the main changes in the center are still identified well (f). Competing
methods struggle not only with the shape of change but also detect a number of FPs far away from the explosion (g)–(i).

When we adjust the scale of morphological operations to
10, SiROC performs significantly better, which suggests that
there may be notable tuning potential for higher resolution
inputs. Still, the baseline parameters perform well on this
scene. Therefore, SiROC demonstrates its usefulness beyond
medium-resolution images and can also be used in conjunction
with high-resolution images for CD.

The other ablation scores again point toward the most
important steps within SiROC to achieve this performance.
Without morphological profiles, the scores of SiROC drop
about 4–9 p.p. in all four categories. Still, it achieves slightly
superior precision and F1-scores but falls short to DCVA
with a difference of about 3 p.p. in specificity and similar
sensitivity. This is a notable difference to medium-resolution
imagery on OSCD where the exclusion of morphological
filters decreased the performance of SiROC, but it was still
superior to DCVA-based methods. This is not necessarily
surprising since deep-learning-based methods tend to rela-
tively improve their CD performance compared to traditional
methods with increasing spatial resolution. Without majority
voting over different neighborhoods, the Vanilla HSR version
performs better but in the range of RCVA and PCVA. Again,
it is the combination of HSR, ensembling over different
neighborhoods and transitioning to the object level with
morphological operations that all contribute significantly to
the overall performance of SiROC.

2) Qualitative Results: Fig. 5 shows visual comparisons of
the discussed methods on BHED. The first row of images
presents the preexplosion image [see Fig. 5(a)], the post
image [see Fig. 5(b)], and the ground truth [see Fig. 5(c)].
The heart of the explosion in the port can be found in the
middle of the image with almost the entirety of buildings
completely destroyed around it. Fig. 5(d) presents the binary
SiROC segmentation with baseline parameters obtained on
OSCD. While SiROC is missing some granularity in its
segmentation of destroyed building footprints, the changing
areas are well identified with few FPs outside of the port.
For a larger morphological filter size ( p), the main area is
identified more densely with better quantitative results, but
the shapes of buildings vanish [see Fig. 5(e)]. Without mor-
phological operations, the core change is still well-segmented
although the number of FPs in the outer regions of the image
increases [see Fig. 5(f)]. SSDCVA shows similar tendencies
to summarize the port area as one large change with a
number of spurious FPs [see Fig. 5(g)]. DCVA shows fewer
salt and pepper noise than SSDCVA here and generally
segments the exploded buildings similar to SiROC, however,
with a slightly more perforated shape [see Fig. 5(h)]. The
segmentation by RCVA is not really competitive here since
the maps are spurious and changes are not well identified [see
Fig. 5(i)]. Results for PCVA are similar to RCVA and, hence,
omitted.
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Fig. 6. Qualitative results agriculture dataset. Pre- (a) and post -GB (b) image with changing agricultural fields. The ground truth (c) shows high similarity
to SiROC (d) but also to DCVA (f) and RCVA (h) while PCVA (g) has some FP areas and spurious change predictions. Change segmentations without
morphological profiles (e) for SiROC still works well which is line with the quantitative results of Table V.

E. Results on Agriculture Dataset

1) Quantitative Results: Table V displays the results of
SiROC and competing methods on the agriculture scene.
SiROC is applied to the dataset with the parameters obtained
on Onera without further adjustment. Hence, the results that
we provide are a validation exercise in the different context of
nonvisible parts of the spectrum without parameter fine-tuning.

To be consistent with previous evaluations on this
dataset [12], we compare SiROC with PCVA and RCVA based
on vegetation (VEG) and near-infrared (NIR) channels of
Sentinel-2 as inputs. The score for DCVAMR is based on the
full Sentinel-2 input images as the method was deliberately
designed to incorporate all channels.

While SiROC achieves the top score in terms of specificity
and precision with 90.81% and 74.23%, respectively, it falls
short of DCVAMR on sensitivity (88.70% versus 94.26%) and
F1-score (80.85% versus 81.47%). DCVAMR seems to lean
slightly more toward the change class, whereas SiROC rather
classifies a pixel as no change in unclear cases. SiROC is
superior to PCVA and comparable to RCVA in performance
for both VEG and NIR channels as inputs.

The ablation scores underline that morphological profiles
still help although the effects are smaller than in urban
applications with an average difference in about 1–2 p.p.
in all four criteria. Furthermore, excluding the majority voting
mechanism does not hurt performance but actually improves it
slightly here. The vanilla HSR performs slightly worse but in
the range of RCVA and better than PCVA on its own. Smaller
benefits of including majority voting and morphological pro-
files could be linked to the fact that parameters for these
operations were tuned in an urban RGB context. Although
already quite effective, the accuracy of SiROC could likely be
further improved with parameter fine-tuning.

TABLE V

QUANTITATIVE RESULTS AGRICULTURE DATASET

2) Qualitative Results: Fig. 6 presents pre and post RGB
images [see Fig. 6(a) and (b)], the ground truth [see Fig. 6(c)],
and change predictions [see Fig. 6(d)–(h)]. The visual impres-
sion of change predictions confirms the quantitative results.
Predictions are fairly accurate on this scene, which suggests
a comparably easy task relative to the more complex OSCD
scenes. SiROC segments changing regions well and struggles
with the varying field shapes only in rare instances. Similarly,
the results of DCVAMR and RCVA are also fairly accurate
with a slightly higher tendency to predict the change class.
In comparison, the mask by PCVA produces some FP regions.
Overall, SiROC shows similar performance to highly effective
methods also in the agriculture domain.

F. Results on Alpine Dataset

1) Quantitative Results: Results for the Alpine dataset can
be found in Table VI. Even though SiROC reaches the highest
specificity, it does not quite pass the overall performance of
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Fig. 7. Qualitative results Alpine dataset. The area of the fire can be seen in purple in the false color composite in (a) with the reference map in (b). SiROC
(NIR) (c) and SiROC (SWIR) (e) both identify the changing area well although the shape is better approximated with NIR inputs. Without morphological
profiles SiROC picks up more FPs (d). DCVAMR shows the most convincing results here (f). RCVA is roughly comparable (h) to SiROC while PCVA falls
behind slightly (g).

DCVAMR from [12] on this dataset. Nevertheless, SiROC
ranks highly also in sensitivity, precision, and F1-score, par-
ticularly based on NIR inputs with total scores of 98.92%,
75.71%, 52.28%, and 61.85%. RCVA with NIR inputs is
comparable in performance, but SiROC is the only method
that makes effective use of SWIR inputs compared to PCVA
and RCVA.

The ablation scores underline the effectiveness of morpho-
logical transformations with about a 20 pp. drop in F1-score
compared to SiROC for both NIR and SWIR. Removing the
ensembling leads to a notable drop in F1-scores, particularly
with NIR inputs.

2) Qualitative Results: Fig. 7 plots prediction masks for
selected models for the Alpine dataset. In Fig. 7(a), the false
color composite shows the annotated area of change affected
[see Fig. 7(b)] by a fire in purple on the right. SiROC identifies
this well although it is tempted to also classify a small number
of FPs as change. While it is hard to control for seasonality in
a bitemporal setting, SiROC (NIR) [see Fig. 7(c)] still excludes
most other vegetation updates that are not the result of actual
change here. The morphological profiles help on this scene
to exclude spurious predictions [see Fig. 7(d)]. Compared to
SiROC (SWIR) [see Fig. 7(e)], SiROC (NIR) segments the
changing area slightly better although the shape is identified
more clearly by DCVAMR [see Fig. 7(f)]. PCVA (NIR) [see
Fig. 7(g)] seems to struggle slightly more with the shape of the
burned area, whereas the results of RCVA (NIR) [see Fig. 7(h)]
look similar to the results of SiROC (NIR), which is in line
with the quantitative scores of Table VI.

TABLE VI

QUANTITATIVE RESULTS ALPINE DATASET

IV. DISCUSSION

SiROC is an effective method for CD in medium- and
high-resolution optical imageries, which achieves competitive
performance on four datasets. In the following, we elaborate
on the intuition of SiROC’s performance. When contrasting
SiROC to image differencing methods, SiROC can be inter-
preted as an improvement over standard image differencing
techniques because it does not assume the same changes in the
acquisition conditions across time for the whole image. Rather,
it allows for local changes in acquisition conditions. In stan-
dard CVA or RCVA, for example, an implicit assumption
is that changes in the acquisition conditions across time
affect each pixel similarly. SiROC releases this restriction and,
instead, allows for local trends in regions of the image. If a
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pixel deviates from the local trend around it, it is likely to
undergo a change in SiROC. In RCVA or CVA, one would
compare this pixel against trends in the whole image and
not against its surrounding only. This might be unrealistic in
complex scenes where pixels values highly depend on local
trends in the surroundings. This is, for example, the case when
a new building casts a shadow on a previously illuminated
pixel. Similarly, a cloudy pixel in t + 1 that was unobstructed
in t might not necessarily be changing and is rather influenced
by the local trend of a cloud rather than general image trends
if large parts of the image are not obstructed by clouds. Hence,
SiROC allows for a more granular analysis of deviations from
trends in an image time series because, compared to previous
methods, it makes full use of multitemporal information in
close and distant neighbors. Although we compare our results
to deep-learning-based methods, our intention is rather to
augment these models than replace them, especially with high-
resolution images. SiROC provides an efficient and accurate
way to obtain change labels that could also be infused into
deep learning models. One application of SiROC could be in
self-supervised learning where pseudolabels are often obtained
based on traditional image differencing techniques, such as
CVA [56]. SiROC is not only superior in performance com-
pared to image differencing. It also comes with a built-in, well-
calibrated uncertainty of predictions. This could be especially
beneficial in self-supervised settings since it automatically
allows discriminating pseudolabels by confidence. For exam-
ple, one could train only based on pseudolabels with high
certainty and discard uncertain data points. Similarly, in some
unsupervised methods, such as MSDRL for VHR imagery,
an initial pseudoclassification is separated by confidence where
high confidence examples are used for training a classifier
that, subsequently, obtains predictions for leftover uncertain
pixels [20]. In these methods, SiROC could also be used
to obtain initial predictions and uncertainties to potentially
improve not only the initial classification but maybe also the
uncertainty categorization. The combination of deep-learning-
based methods and SiROC may hence open up new poten-
tial for CD methods. While we restrict our focus to CD
with optical images here, the framework of SiROC may be
extended for applications on other multitemporal CD problems
in remote sensing as well.

V. CONCLUSION

We present SiROC, an efficient and accurate unsupervised
method for CD in medium- and high-resolution optical images.
SiROC is inspired by HSR that is used for exoplanet search
in astronomy. It models a pixel of interest in t as a linear
combination of its neighbors and applies this model to t +1 to
obtain a prediction for the pixel based on its neighbors. The
difference of the prediction for t +1 and the actual pixel value
in t + 1 is interpreted as the change signal. If the prediction
is far from the actual value, trends in the neighboring pixels
divert from the difference in the pixel of interest over time,
which is seen as an indicator for change on the ground.

We refine and extend HSR in two major ways to apply it
to optical satellite images as SiROC. First, we iterate over

several, mutually exclusive neighborhoods and apply HSR
with all of these neighborhoods as input to obtain a distribution
of change predictions. We combine these predictions with
majority voting, which improves performance significantly
and also returns a heatmap of votes per pixel, which can be
interpreted as a well-calibrated uncertainty. Second, we use
morphological opening and closing at one spatial filter scale
to transition from pixel- to object-level predictions.

The results of SiROC are validated on four datasets. For
urban CD with medium-resolution images, we verify the
effectiveness of our method on OSCD, which contains binary
change annotations for 24 cities across the globe. SiROC
sets a new state-of-the-art unsupervised CD on OSCD, which
surpasses previous methods by 10 p.p. in terms of specificity,
2 p.p. in sensitivity, 11 p.p. in precision, and 13 p.p. in
F1-score. We further validate the performance of SiROC on
high-resolution images with a dataset on the Beirut Harbor
Explosion (BHED). Also, in this dataset, SiROC surpasses
the performance of competing methods and underlines its
abilities to segment urban change accurately at several scales.
Furthermore, we provide two validation exercises on nonurban
data with Sentinel-2 inputs. SiROC segments the effects of a
fire in the Italian Alps accurately and in the range of competing
methods. On the Agriculture dataset, SiROC falls short of
DCVAMR in overall scores but still identifies the changing
crop activity correctly.

While SiROC compares well against current deep-learning-
based unsupervised methods in CD, SiROC should rather be
seen as a complement than a substitute to these methods. Since
it provides an accurate way to predict change signals with a
built-in, well-calibrated uncertainty, it may be especially useful
in conjunction with deep-learning-based methods to generate
pseudolabels. Although we apply SiROC primarily to changes
with multispectral data, the model may be applicable to other
CD problems as well, which we plan to explore in future
research.

ACKNOWLEDGMENT

The authors are grateful to the Center for Satellite Based
Crisis Information (ZKI), German Aerospace Center, for pro-
viding the ground truth of the Beirut Explosion scene.

REFERENCES

[1] D. Lu, E. Moran, and S. Hetrick, “Detection of impervious surface
change with multitemporal Landsat images in an urban–rural frontier,”
ISPRS J. Photogram. Remote Sens., vol. 66, no. 3, pp. 298–306,
May 2011.

[2] S. Ji, Y. Shen, M. Lu, and Y. Zhang, “Building instance change detection
from large-scale aerial images using convolutional neural networks and
simulated samples,” Remote Sens., vol. 11, no. 11, p. 1343, Jun. 2019.

[3] G. Chen and G. J. Hay, “An airborne lidar sampling strategy to model
forest canopy height from quickbird imagery and GEOBIA,” Remote
Sens. Environ., vol. 115, no. 6, pp. 1532–1542, Jun. 2011.

[4] Y. Gao, F. Gao, J. Dong, and S. Wang, “Transferred deep learning for
sea ice change detection from synthetic-aperture radar images,” IEEE
Geosci. Remote Sens. Lett., vol. 16, no. 10, pp. 1655–1659, Oct. 2019.

[5] K. Rokni, A. Ahmad, K. Solaimani, and S. Hazini, “A new approach
for surface water change detection: Integration of pixel level image
fusion and image classification techniques,” Int. J. Appl. Earth
Observ. Geoinf., vol. 34, pp. 226–234, Feb. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0303243414001780

[6] R. Gupta et al., “Creating xBD: A dataset for assessing building damage
from satellite imagery,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, Jun. 2019, pp. 10–17.



5614615 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

[7] L. Moya et al., “Detecting urban changes using phase correlation and
�1-based sparse model for early disaster response: A case study of the
2018 sulawesi Indonesia earthquake-tsunami,” Remote Sens. Environ.,
vol. 242, Jun. 2020, Art. no. 111743.

[8] M. Zanetti et al., “A system for burned area detection on multi-
spectral imagery,” IEEE Trans. Geosci. Remote Sens., early access,
Sep. 17, 2021, doi: 10.1109/TGRS.2021.3110280.

[9] X. X. Zhu et al., “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag., vol. 5,
no. 4, pp. 8–36, Dec. 2017.

[10] M. Drusch et al., “Sentinel-2: ESA’s optical high-resolution mission
for GMES operational services,” Remote Sens. Environ., vol. 120,
pp. 25–36, May 2012.

[11] C. Kwan et al., “Assessment of spatiotemporal fusion algorithms
for planet and worldview images,” Sensors, vol. 18, no. 4, p. 1051,
Mar. 2018.

[12] S. Saha, F. Bovolo, and L. Bruzzone, “Unsupervised deep change vector
analysis for multiple-change detection in VHR images,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 6, pp. 3677–3693, Jun. 2019.

[13] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change
detection based on deep Siamese convolutional network for optical
aerial images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10,
pp. 1845–1849, Oct. 2017.

[14] H. Lyu, H. Lu, and L. Mou, “Learning a transferable change rule from
a recurrent neural network for land cover change detection,” Remote
Sens., vol. 8, no. 6, p. 506, 2016.

[15] L. Mou, L. Bruzzone, and X. X. Zhu, “Learning spectral-spatial-
temporal features via a recurrent convolutional neural network for
change detection in multispectral imagery,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 2, pp. 924–935, Feb. 2019.

[16] P. Zhang, M. Gong, L. Su, J. Liu, and Z. Li, “Change detection based
on deep feature representation and mapping transformation for multi-
spatial-resolution remote sensing images,” Photogram. Remote Sens.,
vol. 116, pp. 24–41, Sep. 2016.

[17] S. Saha, L. Mou, X. X. Zhu, F. Bovolo, and L. Bruzzone, “Semisu-
pervised change detection using graph convolutional network,” IEEE
Geosci. Remote Sens. Lett., vol. 18, no. 4, pp. 607–611, Apr. 2021.

[18] M. Gong, Y. Yang, T. Zhan, X. Niu, and S. Li, “A generative discrimi-
natory classified network for change detection in multispectral imagery,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 1,
pp. 321–333, Jan. 2019.

[19] S. Saha, L. Mou, C. Qiu, X. X. Zhu, F. Bovolo, and L. Bruzzone,
“Unsupervised deep joint segmentation of multitemporal high-resolution
images,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 12,
pp. 8780–8792, Dec. 2020.

[20] T. Zhan, M. Gong, X. Jiang, and M. Zhang, “Unsupervised scale-driven
change detection with deep spatial–spectral features for VHR images,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 8, pp. 5653–5665,
Aug. 2020.

[21] M. Gong, H. Yang, and P. Zhang, “Feature learning and change feature
classification based on deep learning for ternary change detection in
SAR images,” J. Photogramm. Remote Sens., vol. 129, pp. 212–225,
Jul. 2017.

[22] F. Gao, X. Wang, Y. Gao, J. Dong, and S. Wang, “Sea ice change
detection in SAR images based on convolutional-wavelet neural net-
works,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 8, pp. 1240–1244,
Aug. 2019.

[23] F. Gao, J. Dong, B. Li, and Q. Xu, “Automatic change detection
in synthetic aperture radar images based on PCANet,” IEEE Geosci.
Remote Sens. Lett., vol. 13, no. 12, pp. 1792–1796, Dec. 2016.

[24] M. Li, M. Li, P. Zhang, Y. Wu, W. Song, and L. An, “SAR image
change detection using PCANet guided by saliency detection,” IEEE
Geosci. Remote Sens. Lett., vol. 16, no. 3, pp. 402–406, Mar. 2018.

[25] M. Gong, X. Niu, P. Zhang, and Z. Li, “Generative adversarial networks
for change detection in multispectral imagery,” IEEE Geosci. Remote
Sens. Lett., vol. 14, no. 12, pp. 2310–2314, Nov. 2017.

[26] S. Saha, Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “Unsuper-
vised deep transfer learning-based change detection for HR multispectral
images,” IEEE Geosci. Remote Sens. Lett., vol. 18, no. 5, pp. 856–860,
May 2021.

[27] A. Singh, “Review article digital change detection techniques using
remotely-sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003,
1989.

[28] Y. T. S. Correa, F. Bovolo, and L. Bruzzone, “Change detection in very
high resolution multisensor images,” in Proc. 20th Image Signal Process.
Remote Sens., vol. 9244, 2014, Art. no. 924410.

[29] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66,
Jan. 1979.

[30] F. Thonfeld, H. Feilhauer, M. Braun, and G. Menz, “Robust change
vector analysis (RCVA) for multi-sensor very high resolution optical
satellite data,” Int. J. Appl. Earth Observ. Geoinf., vol. 50, pp. 131–140,
Aug. 2016.

[31] L. Bruzzone and D. F. Prieto, “Automatic analysis of the difference
image for unsupervised change detection,” IEEE Trans. Geosci. Remote
Sens., vol. 38, no. 3, pp. 1171–1182, May 2000.

[32] L. Bruzzone and D. F. Prieto, “A minimum-cost thresholding technique
for unsupervised change detection,” Int. J. Remote Sens., vol. 21, no. 18,
pp. 3539–3544, 2000.

[33] T. Celik, “Unsupervised change detection in satellite images using
principal component analysis and k-means clustering,” IEEE Geosci.
Remote Sens. Lett., vol. 6, no. 4, pp. 772–776, Aug. 2009.

[34] F. Bovolo and L. Bruzzone, “A theoretical framework for unsuper-
vised change detection based on change vector analysis in the polar
domain,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 1, pp. 218–236,
Jan. 2006.

[35] F. Bovolo, S. Marchesi, and L. Bruzzone, “A framework for auto-
matic and unsupervised detection of multiple changes in multitem-
poral images,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6,
pp. 2196–2212, May 2011.

[36] F. Bovolo, “A multilevel parcel-based approach to change detection in
very high resolution multitemporal images,” IEEE Geosci. Remote Sens.
Lett., vol. 6, no. 1, pp. 33–37, Jan. 2008.

[37] L. Li, X. Li, Y. Zhang, L. Wang, and G. Ying, “Change detection for
high-resolution remote sensing imagery using object-oriented change
vector analysis method,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.
(IGARSS), Jul. 2016, pp. 2873–2876.

[38] N. Falco, G. Cavallaro, P. R. Marpu, and J. A. Benediktsson, “Unsu-
pervised change detection analysis to multi-channel scenario based on
morphological contextual analysis,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp. (IGARSS), Jul. 2016, pp. 3374–3377.

[39] D. Wang, D. W. Hogg, D. Foreman-Mackey, and B. Schölkopf,
“A causal, data-driven approach to modeling the Kepler data,” Publica-
tions Astronomical Soc. Pacific, vol. 128, no. 967, 2016, Art. no. 094503.

[40] B. Schölkopf et al., “Modeling confounding by half-sibling regres-
sion,” Proc. Nat. Acad. Sci. USA, vol. 113, no. 27, pp. 7391–7398,
Jul. 2016.

[41] M. Heikkilä, M. Pietikäinen, and C. Schmid, “Description of interest
regions with local binary patterns,” Pattern Recognit., vol. 42, no. 3,
pp. 425–436, 2009.

[42] G.-A. Bilodeau, J.-P. Jodoin, and N. Saunier, “Change detection in
feature space using local binary similarity patterns,” in Proc. Int. Conf.
Comput. Robot Vis., May 2013, pp. 106–112.

[43] N. Gupta, G. V. Pillai, and S. Ari, “Change detection in optical satellite
images based on local binary similarity pattern technique,” IEEE Geosci.
Remote Sens. Lett., vol. 15, no. 3, pp. 389–393, Mar. 2018.

[44] Y. Sun, L. Lei, X. Li, X. Tan, and G. Kuang, “Patch similarity
graph matrix-based unsupervised remote sensing change detection with
homogeneous and heterogeneous sensors,” IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 6, pp. 4841–4861, Jun. 2021.

[45] L. Bruzzone and F. Bovolo, “A conceptual framework for change
detection in very high resolution remote sensing images,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp., Jul. 2010, pp. 2555–2558.

[46] D. Wang, D. W. Hogg, D. Foreman-Mackey, and B. Schölkopf,
“A pixel-level model for event discovery in time-domain imaging,” 2017,
arXiv:1710.02428.

[47] T. D. Gebhard, M. J. Bonse, S. P. Quanz, and B. Schölkopf,
“Physically constrained causal noise models for high-contrast imag-
ing of exoplanets,” Dec. 2020, arXiv:2010.05591. [Online]. Available:
https://arxiv.org/abs/2010.05591

[48] N. Coudray, J.-L. Buessler, and J.-P. Urban, “Robust threshold estimation
for images with unimodal histograms,” Pattern Recognit. Lett., vol. 31,
no. 9, pp. 1010–1019, Jul. 2010.

[49] P. L. Rosin, “Unimodal thresholding,” Pattern Recognit., vol. 34, no. 11,
pp. 2083–2096, 2001.

[50] Y. Bazi, L. Bruzzone, and F. Melgani, “Image thresholding based on
the EM algorithm and the generalized Gaussian distribution,” Pattern
Recognit., vol. 40, no. 2, pp. 619–634, Feb. 2007.

[51] M. Zanetti, F. Bovolo, and L. Bruzzone, “Rayleigh-Rice mixture para-
meter estimation via EM algorithm for change detection in multispectral
images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5004–5016,
Dec. 2015.

http://dx.doi.org/10.1109/TGRS.2021.3110280


KONDMANN et al.: SPATIAL CONTEXT AWARENESS FOR UNSUPERVISED CD IN OPTICAL SATELLITE IMAGES 5614615

[52] A. Song, Y. Kim, and Y. Han, “Uncertainty analysis for object-based
change detection in very high-resolution satellite images using deep
learning network,” Remote Sens., vol. 12, no. 15, p. 2345, Jul. 2020.

[53] M. D. Mura, J. A. Benediktsson, F. Bovolo, and L. Bruzzone, “An unsu-
pervised technique based on morphological filters for change detection
in very high resolution images,” IEEE Geosci. Remote Sens. Lett., vol. 5,
no. 3, pp. 433–437, Jul. 2008.

[54] S. Liu, Q. Du, X. Tong, A. Samat, L. Bruzzone, and F. Bovolo, “Multi-
scale morphological compressed change vector analysis for unsupervised
multiple change detection,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 10, no. 9, pp. 4124–4137, Sep. 2017.

[55] R. C. Daudt, B. L. Saux, A. Boulch, and Y. Gousseau, “Urban change
detection for multispectral Earth observation using convolutional neural
networks,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS),
Jul. 2018, pp. 2115–2118.

[56] H. Dong, W. Ma, Y. Wu, J. Zhang, and L. Jiao, “Self-supervised
representation learning for remote sensing image change detection
based on temporal prediction,” Remote Sens., vol. 12, no. 11, p. 1868,
Jun. 2020.

Lukas Kondmann received the bachelor’s degree in
economics from the Ludwig Maximilian University
of Munich, Munich, Germany, in 2016, the Honors
degree in technology management from the Center
for Digital Technology and Management, Munich,
in 2017, and the master’s degree in social data
science from the University of Oxford, Oxford,
U.K., in 2019. He is currently pursuing the Ph.D.
degree in engineering with the Technical University
of Munich, Munich, and the German Aerospace
Center, Munich.

He was a Visiting Researcher working on big data for social good with
the School of Information, University of California at Berkeley (UC Berke-
ley), Berkeley, CA, USA, in spring 2017. His research is centered around
time-series analysis of multispectral remote sensing imagery with a focus on
monitoring the sustainable development goals (SDGs).

Aysim Toker received the B.Sc. degree in com-
puter engineering and the M.Sc. degree in computer
science from the Technical University of Munich,
Munich, Germany, in 2016 and 2018, respectively,
where she is currently pursuing the Ph.D. degree
with the Dynamic Vision and Learning Group, under
the supervision of Prof. Dr. Laura Leal-Taixe for a
joint project with Prof. Dr. Xiaoxiang Zhu.

She has been a programmer for many years, with
broad experience in many languages. Her interest in
computer vision and machine learning started with

her M.Sc. degree. During her master’s thesis, she concentrated on video object
segmentation. Currently, she is doing research in deep learning, sequence
analysis, and remote sensing with a focus on the intersection of these three
domains.

Sudipan Saha (Member, IEEE) received the
M.Tech. degree in electrical engineering from IIT
Bombay, Mumbai, India, in 2014, and the Ph.D.
degree in information and communication technolo-
gies from the University of Trento, Trento, Italy, and
the Fondazione Bruno Kessler, Trento, in 2020.

He was an Engineer with TSMC Ltd., Hsinchu,
Taiwan, from 2015 to 2016. In 2019, he was a Guest
Researcher with the Technical University of Munich
(TUM), Munich, Germany, where he is currently a
Post-Doctoral Researcher. His research interests are

related to multitemporal remote sensing image analysis, domain adaptation,
time-series analysis, image segmentation, deep learning, image processing,
and pattern recognition.

Dr. Saha was a recipient of the Fondazione Bruno Kessler Best Student
Award in 2020. He is a reviewer for several international journals. He has
served as a Guest Editor for Remote Sensing (MDPI) special issue on
“Advanced Artificial Intelligence for Remote Sensing: Methodology and
Application.”

Bernhard Schölkopf has researched at AT&T Bell
Labs, Holmdel, NJ, USA, GMD FIRST, Berlin,
Germany, and Microsoft Research Cambridge, Cam-
bridge, U.K., becoming a Max Planck Director in
2001. He is currently a Professor with ETH Zürich,
Zürich, Switzerland. He co-initiated the MLSS series
of Machine Learning Summer Schools, the Cyber
Valley Initiative, and the ELLIS grassroots initiative.
He has applied his methods to a number of different
fields, ranging from biomedical problems to compu-
tational photography and astronomy. His scientific

interests are in machine learning and causal inference.
Dr. Schölkopf is also a fellow of the Association for Computing Machinery

(ACM) and the CIFAR Program Learning in Machines and Brains and a
member of the German Academy of Sciences. He (co)received the Academy
Prize of the Berlin-Brandenburg Academy of Sciences and Humanities, the
Royal Society Milner Award, the Leibniz Award, the Koerber European
Science Prize, and the BBVA Foundation Frontiers of Knowledge Award.
He is the Co-Editor-in-Chief of the Journal of Machine Learning Research,
an early development in open access and today the field’s flagship journal.

Laura Leal-Taixé received the B.Sc. and M.Sc.
degrees in telecommunications engineering from the
Technical University of Catalonia (UPC), Barcelona,
Spain, in 2005 and 2008, respectively, and the Ph.D.
degree from the Leibniz University of Hannover,
Hanover, Germany, in 2013.

She was a Visiting Scholar with the University
of Michigan, Ann Arbor, MI, USA. She spent
two years as a Post-Doctoral Researcher at ETH
Zürich, Zürich, Switzerland, and a year as a Senior
Post-Doctoral Researcher at the Computer Vision

Group, Technical University of Munich, Munich, Germany. She went to
Boston, MA, USA, to do her master’s thesis at Northeastern University,
Boston, with a fellowship from the Vodafone foundation. She is currently a
tenure-track Professor (W2) with the Technical University of Munich, leading
the Dynamic Vision and Learning Group.

Dr. Leal-Taixé was a recipient of the Sofja Kovalevskaja Award of 1.65 mil-
lion euros for her project socialMaps and the Google Faculty Award.

Xiao Xiang Zhu (Fellow, IEEE) received the
M.Sc., Dr.Ing., and “Habilitation” degrees in signal
processing from the Technical University of Munich
(TUM), Munich, Germany, in 2008, 2011, and 2013,
respectively.

She was a Guest Scientist or a Visiting Professor
with the Italian National Research Council (CNR-
IREA), Naples, Italy, Fudan University, Shanghai,
China, The University of Tokyo, Tokyo, Japan, and
the University of California at Los Angeles, Los
Angeles, CA, USA, in 2009, 2014, 2015, and 2016,

respectively. Since 2019, she has been a Co-Coordinator of the Munich Data
Science Research School, Munich. Since 2019, she has been heading the
Helmholtz Artificial Intelligence—Research Field “Aeronautics, Space, and
Transport.” Since May 2020, she has been the Director of the international
future AI lab “AI4EO—Artificial Intelligence for Earth Observation: Reason-
ing, Uncertainties, Ethics and Beyond,” Munich. Since October 2020, she has
been the Co-Director of the Munich Data Science Institute (MDSI), TUM. She
is currently a Professor with Data Science in Earth Observation (former: Signal
Processing in Earth Observation), TUM, and the Head of the Department
“EO Data Science,” Remote Sensing Technology Institute, German Aerospace
Center (DLR), Weßling, Germany. She is currently a Visiting AI Professor
with ESA’s Phi-Lab, Frascati, Italy. Her main research interests are remote
sensing and Earth observation, signal processing, machine learning, and data
science, with a special application focus on global urban mapping.

Dr. Zhu is also a member of the young academy, Junge Akademie/Junges
Kolleg, at the Berlin-Brandenburg Academy of Sciences and Humanities,
the German National Academy of Sciences Leopoldina, and the Bavarian
Academy of Sciences and Humanities. She also serves on the scientific advi-
sory board in several research organizations, including the German Research
Center for Geosciences (GFZ) and the Potsdam Institute for Climate Impact
Research (PIK). She is also an Associate Editor of IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING. She also serves as the Area Editor
responsible for special issues of IEEE Signal Processing Magazine.


