Kondmann, Lukas und Toker, Aysim und Saha, Sudipan und Schölkopf, Bernhard und Leal-Taixé, Laura und Zhu, Xiao Xiang (2022) Spatial Context Awareness for Unsupervised Change Detection in Optical Satellite Images. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5614615. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2021.3130842. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9627707
Kurzfassung
Detecting changes on the ground in multitemporal Earth observation data is one of the key problems in remote sensing. In this paper, we introduce Sibling Regression for Optical Change detection (SiROC), an unsupervised method for change detection in optical satellite images with medium and high resolution. SiROC is a spatial context-based method that models a pixel as a linear combination of its distant neighbors. It uses this model to analyze differences in the pixel and its spatial context-based predictions in subsequent time periods for change detection. We combine this spatial context-based change detection with ensembling over mutually exclusive neighborhoods and transitioning from pixel to object-level changes with morphological operations. SiROC achieves competitive performance for change detection with medium-resolution Sentinel-2 and high-resolution Planetscope imagery on four datasets. Besides accurate predictions without the need for training, SiROC also provides a well-calibrated uncertainty of its predictions.
elib-URL des Eintrags: | https://elib.dlr.de/145630/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Spatial Context Awareness for Unsupervised Change Detection in Optical Satellite Images | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 60 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2021.3130842 | ||||||||||||||||||||||||||||
Seitenbereich: | Seite 5614615 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Change Detection, unsupervised, optical images, multitemporal, urban analysis | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Kondmann, Lukas | ||||||||||||||||||||||||||||
Hinterlegt am: | 19 Nov 2021 09:21 | ||||||||||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 14:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags