Gawlikowski, Jakob and Saha, Sudipan and Kruspe, Anna and Zhu, Xiao Xiang (2021) Towards Out-of-Distribution Detection for Remote Sensing. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 8676-8679. IGARSS 2021, 2021-07-11 - 2021-07-16, Brüssel, Belgien. doi: 10.1109/IGARSS47720.2021.9553266.
PDF
284kB |
Official URL: https://ieeexplore.ieee.org/document/9553266
Abstract
In remote sensing, distributional mismatch between the training and test data may arise due to several reasons, including unseen classes in the test data, differences in the geographic area, and multi-sensor differences. Deep learning based models may behave in unexpected manners when subjected to test data that has such distributional shifts from the training data, also called out-of-distribution (OOD) examples. Vulnerability to OOD data severely reduces the reliability of deep learning based models. In this work, we address this issue by proposing a model to quantify distributional uncertainty of deep learning based remote sensing models. In particular, we adopt a Dirichlet Prior Network for remote sensing data. The approach seeks to maximize the representation gap between the in-domain and OOD examples for a better identification of unknown examples at test time. Experimental results on three exemplary test scenarios show that the proposed model can detect OOD images in remote sensing.
Item URL in elib: | https://elib.dlr.de/145041/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Towards Out-of-Distribution Detection for Remote Sensing | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553266 | ||||||||||||||||||||
Page Range: | pp. 8676-8679 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Out-of- distribution, open set recognition, robustness, remote sensing | ||||||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||||||
Event Location: | Brüssel, Belgien | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 11 July 2021 | ||||||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Institute of Data Science > Datamangagement and Analysis | ||||||||||||||||||||
Deposited By: | Gawlikowski, Jakob | ||||||||||||||||||||
Deposited On: | 01 Nov 2021 08:32 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:44 |
Repository Staff Only: item control page