Gawlikowski, Jakob und Saha, Sudipan und Kruspe, Anna und Zhu, Xiao Xiang (2021) Towards Out-of-Distribution Detection for Remote Sensing. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 8676-8679. IGARSS 2021, 2021-07-11 - 2021-07-16, Brüssel, Belgien. doi: 10.1109/IGARSS47720.2021.9553266.
PDF
284kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9553266
Kurzfassung
In remote sensing, distributional mismatch between the training and test data may arise due to several reasons, including unseen classes in the test data, differences in the geographic area, and multi-sensor differences. Deep learning based models may behave in unexpected manners when subjected to test data that has such distributional shifts from the training data, also called out-of-distribution (OOD) examples. Vulnerability to OOD data severely reduces the reliability of deep learning based models. In this work, we address this issue by proposing a model to quantify distributional uncertainty of deep learning based remote sensing models. In particular, we adopt a Dirichlet Prior Network for remote sensing data. The approach seeks to maximize the representation gap between the in-domain and OOD examples for a better identification of unknown examples at test time. Experimental results on three exemplary test scenarios show that the proposed model can detect OOD images in remote sensing.
elib-URL des Eintrags: | https://elib.dlr.de/145041/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Towards Out-of-Distribution Detection for Remote Sensing | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553266 | ||||||||||||||||||||
Seitenbereich: | Seiten 8676-8679 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Out-of- distribution, open set recognition, robustness, remote sensing | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||||||
Veranstaltungsort: | Brüssel, Belgien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 11 Juli 2021 | ||||||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||||||||||||||
Hinterlegt von: | Gawlikowski, Jakob | ||||||||||||||||||||
Hinterlegt am: | 01 Nov 2021 08:32 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags