Ansari, Homa and Russwurm, Marc and Ali, Syed Mohsin and Montazeri, Sina and Parizzi, Alessandro and Zhu, Xiao Xiang (2021) InSAR Displacement Time Series Mining: A Machine Learning Approach. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1-4. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels, Belgium + Virtual. doi: 10.1109/IGARSS47720.2021.9553465.
PDF
417kB |
Abstract
Interferometric Synthetic Aperture Radar (InSAR)-derivedsurface displacement time series enable a wide range of ap-plications from urban structural monitoring to geohazardassessment.With systematic data acquisitions becomingthe new norm for SAR missions, millions of time series arecontinuously generated. Machine Learning provides a frame-work for the efficient mining of such big data. Here, we focuson unsupervised mining of the data via clustering the similartemporal patterns and data-driven displacement signal re-construction from the InSAR time series. We propose a deepLong Short Term Memory (LSTM) autoencoder model whichcan exploit temporal relations in contrast to the commonlyused shallow learning methods, such as Uniform ManifoldApproximation and Projection (UMAP). We also modify theloss function to allow the quantification of uncertainties inthe time series data. The two approaches are applied to theLazufre Volcanic Complex located at the central volcaniczone of the Andes and thereby compared.
Item URL in elib: | https://elib.dlr.de/142311/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | InSAR Displacement Time Series Mining: A Machine Learning Approach | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | July 2021 | ||||||||||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553465 | ||||||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Time Series, Autoencoders, LSTM, Deep Learning, Shallow Learning, InSAR, Deformation | ||||||||||||||||||||||||||||
Event Title: | IGARSS 2021 | ||||||||||||||||||||||||||||
Event Location: | Brussels, Belgium + Virtual | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 12 July 2021 | ||||||||||||||||||||||||||||
Event End Date: | 16 July 2021 | ||||||||||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - SAR methods | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Remote Sensing Technology Institute > SAR Signal Processing | ||||||||||||||||||||||||||||
Deposited By: | Ansari, Homa | ||||||||||||||||||||||||||||
Deposited On: | 10 Jun 2021 13:50 | ||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page