Ansari, Homa und Russwurm, Marc und Ali, Syed Mohsin und Montazeri, Sina und Parizzi, Alessandro und Zhu, Xiao Xiang (2021) InSAR Displacement Time Series Mining: A Machine Learning Approach. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 1-4. IGARSS 2021, 2021-07-12 - 2021-07-16, Brussels, Belgium + Virtual. doi: 10.1109/IGARSS47720.2021.9553465.
PDF
417kB |
Kurzfassung
Interferometric Synthetic Aperture Radar (InSAR)-derivedsurface displacement time series enable a wide range of ap-plications from urban structural monitoring to geohazardassessment.With systematic data acquisitions becomingthe new norm for SAR missions, millions of time series arecontinuously generated. Machine Learning provides a frame-work for the efficient mining of such big data. Here, we focuson unsupervised mining of the data via clustering the similartemporal patterns and data-driven displacement signal re-construction from the InSAR time series. We propose a deepLong Short Term Memory (LSTM) autoencoder model whichcan exploit temporal relations in contrast to the commonlyused shallow learning methods, such as Uniform ManifoldApproximation and Projection (UMAP). We also modify theloss function to allow the quantification of uncertainties inthe time series data. The two approaches are applied to theLazufre Volcanic Complex located at the central volcaniczone of the Andes and thereby compared.
elib-URL des Eintrags: | https://elib.dlr.de/142311/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | InSAR Displacement Time Series Mining: A Machine Learning Approach | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Juli 2021 | ||||||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1109/IGARSS47720.2021.9553465 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Time Series, Autoencoders, LSTM, Deep Learning, Shallow Learning, InSAR, Deformation | ||||||||||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2021 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Brussels, Belgium + Virtual | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 Juli 2021 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 16 Juli 2021 | ||||||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - SAR-Methoden | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||||||
Hinterlegt von: | Ansari, Homa | ||||||||||||||||||||||||||||
Hinterlegt am: | 10 Jun 2021 13:50 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags