Gawlikowski, Jakob and Saha, Sudipan and Kruspe, Anna and Zhu, Xiao Xiang (2021) Out-of-Distribution Detection in Satellite Image Classification. In: RobustML Workshop at ICLR 2021, pp. 1-5. ICRL. The Ninth International Conference on Learning Representations, 2021-05-03 - 2021-05-07, Virtual event.
PDF
264kB |
Official URL: https://sites.google.com/connect.hku.hk/robustml-2021/accepted-papers/paper-012
Abstract
In satellite image analysis, distributional mismatch between the training and test data may arise due to several reasons, including unseen classes in the test data and differences in the geographic area. Deep learning based models may behave in unexpected manner when subjected to test data that has such distributional shifts from the training data, also called out-of-distribution (OOD) examples. Predictive uncertainly analysis is an emerging research topic which has not been explored much in context of satellite image analysis. Towards this, we adopt a Dirichlet Prior Network based model to quantify distributional uncertainty of deep learning models for remote sensing. The approach seeks to maximize the representation gap between the in-domain and OOD examples for a better identification of unknown examples at test time. Experimental results on three exemplary test scenarios show the efficacy of the model in satellite image analysis.
Item URL in elib: | https://elib.dlr.de/142285/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||||||
Title: | Out-of-Distribution Detection in Satellite Image Classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | May 2021 | ||||||||||||||||||||
Journal or Publication Title: | RobustML Workshop at ICLR 2021 | ||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Page Range: | pp. 1-5 | ||||||||||||||||||||
Publisher: | ICRL | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | out-of-distribution, satellite image classification | ||||||||||||||||||||
Event Title: | The Ninth International Conference on Learning Representations | ||||||||||||||||||||
Event Location: | Virtual event | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 3 May 2021 | ||||||||||||||||||||
Event End Date: | 7 May 2021 | ||||||||||||||||||||
Organizer: | ICLR | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Institute of Data Science > Datamangagement and Analysis | ||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Deposited On: | 21 May 2021 17:03 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:42 |
Repository Staff Only: item control page