Gawlikowski, Jakob und Saha, Sudipan und Kruspe, Anna und Zhu, Xiao Xiang (2021) Out-of-Distribution Detection in Satellite Image Classification. In: RobustML Workshop at ICLR 2021, Seiten 1-5. ICRL. The Ninth International Conference on Learning Representations, 2021-05-03 - 2021-05-07, Virtual event.
PDF
264kB |
Offizielle URL: https://sites.google.com/connect.hku.hk/robustml-2021/accepted-papers/paper-012
Kurzfassung
In satellite image analysis, distributional mismatch between the training and test data may arise due to several reasons, including unseen classes in the test data and differences in the geographic area. Deep learning based models may behave in unexpected manner when subjected to test data that has such distributional shifts from the training data, also called out-of-distribution (OOD) examples. Predictive uncertainly analysis is an emerging research topic which has not been explored much in context of satellite image analysis. Towards this, we adopt a Dirichlet Prior Network based model to quantify distributional uncertainty of deep learning models for remote sensing. The approach seeks to maximize the representation gap between the in-domain and OOD examples for a better identification of unknown examples at test time. Experimental results on three exemplary test scenarios show the efficacy of the model in satellite image analysis.
elib-URL des Eintrags: | https://elib.dlr.de/142285/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||||||
Titel: | Out-of-Distribution Detection in Satellite Image Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2021 | ||||||||||||||||||||
Erschienen in: | RobustML Workshop at ICLR 2021 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||||||||||
Verlag: | ICRL | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | out-of-distribution, satellite image classification | ||||||||||||||||||||
Veranstaltungstitel: | The Ninth International Conference on Learning Representations | ||||||||||||||||||||
Veranstaltungsort: | Virtual event | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 3 Mai 2021 | ||||||||||||||||||||
Veranstaltungsende: | 7 Mai 2021 | ||||||||||||||||||||
Veranstalter : | ICLR | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Hinterlegt am: | 21 Mai 2021 17:03 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags