Shi, Yilei and Bamler, Richard and Wang, Yuanyuan and Zhu, Xiao Xiang (2020) Generation of Large-Scale High Quality 3-D Urban Models. In: 2020 IEEE Radar Conference, RadarConf 2020, pp. 1-6. 2020 IEEE Radar Conference, 2020-09-21 - 2020-09-25, virtual. doi: 10.1109/RadarConf2043947.2020.9266314. ISBN 978-172818942-0. ISSN 1097-5659.
![]() |
PDF
3MB |
Official URL: https://ieeexplore.ieee.org/document/9266314
Abstract
Interferometric synthetic aperture radar (InSAR) techniques are powerful tool for reconstructing the 3-D position of scatterers, especially for the urban areas. Since the estimation accuracy depends on the inverse of number of interferograms and signal-to-noise ratio (SNR), it is necessary to use as many as possible interferograms in order to achieve more accurate result. However, the number of interferograms of TanDEM-X data is generally limited for most areas. Therefore, in order to maintain the estimation accuracy, one feasible way is to increase the SNR. In this work, we proposed a novel framework, which integrates the non-local procedure into SAR tomography inversion and combines the robust estimation. A large-scale demonstration has been carried out with five TanDEM-X bistatic data, which covers the entire city of Munich, Germany. Quantitative evaluation of the reconstructed result with the LiDAR reference exhibits the standard deviation of the height difference is within two meters, which implies the proposed framework has great potential for high quality large-scale 3-D urban modeling.
Item URL in elib: | https://elib.dlr.de/140937/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Generation of Large-Scale High Quality 3-D Urban Models | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | September 2020 | ||||||||||||||||||||
Journal or Publication Title: | 2020 IEEE Radar Conference, RadarConf 2020 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/RadarConf2043947.2020.9266314 | ||||||||||||||||||||
Page Range: | pp. 1-6 | ||||||||||||||||||||
ISSN: | 1097-5659 | ||||||||||||||||||||
ISBN: | 978-172818942-0 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | 3-D urban models, InSAR, TomoSAR, TanDEM-X, global mapping | ||||||||||||||||||||
Event Title: | 2020 IEEE Radar Conference | ||||||||||||||||||||
Event Location: | virtual | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 21 September 2020 | ||||||||||||||||||||
Event End Date: | 25 September 2020 | ||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old), R - SAR methods | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Leitungsbereich MF Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Bierkamp-Michalak, Bettina | ||||||||||||||||||||
Deposited On: | 12 Feb 2021 15:26 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:41 |
Repository Staff Only: item control page