Hu, Xuke and Alexey, Noskov and Fan, Hongchao and Novack, Tessio and Li, Hao and Gu, Fuqiang and Shang, Jianga and Zipf, Alexander (2020) Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning. International Journal of Geographical Information Science. Taylor & Francis. ISSN 1365-8816. (In Press)
![]() |
PDF
- Postprint version (accepted manuscript)
10MB |
Abstract
Determining the location of a building’s entrance is crucial to location-based services, such as wayfinding for pedestrians. Unfortunately, entrance information is often missing from current mainstream map providers such as Google Maps. Frequently, automatic approaches for detecting building entrances are based on street-level images that are not widely available. To address this issue, we propose a more general approach for inferring the main entrances of public buildings based on the association between spatial elements extracted from OpenStreetMap. In particular, we adopt three binary classification approaches, weighted random forest, balanced random forest, and smooth-boost to model the association relationship. There are two types of features considered in the classification: intrinsic features derived from building footprints and extrinsic features derived from spatial contexts, such as roads, green spaces, bicycle parking areas, and neighboring buildings. We conducted extensive experiments on 320 public buildings with an average perimeter of 350 m. The experimental results showed that the locations of building entrances estimated by the weighted random forest and balanced random forest models have a mean linear distance error of 21 m and a mean path distance error of 22 m, ruling out 90\% of the incorrect locations of the main entrance of buildings. The proposed approach indicates a marked improvement to automatically locate building entrances in support for location-based services, such as indoor-outdoor navigation and deliveries.
Item URL in elib: | https://elib.dlr.de/140288/ | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | |||||||||||||||||||||||||||
Title: | Tagging the main entrances of public buildings based on OpenStreetMap and binary imbalanced learning | |||||||||||||||||||||||||||
Authors: |
| |||||||||||||||||||||||||||
Date: | 2020 | |||||||||||||||||||||||||||
Journal or Publication Title: | International Journal of Geographical Information Science | |||||||||||||||||||||||||||
Refereed publication: | Yes | |||||||||||||||||||||||||||
Open Access: | Yes | |||||||||||||||||||||||||||
Gold Open Access: | No | |||||||||||||||||||||||||||
In SCOPUS: | Yes | |||||||||||||||||||||||||||
In ISI Web of Science: | Yes | |||||||||||||||||||||||||||
Publisher: | Taylor & Francis | |||||||||||||||||||||||||||
ISSN: | 1365-8816 | |||||||||||||||||||||||||||
Status: | In Press | |||||||||||||||||||||||||||
Keywords: | Main entrance tagging;OpenStreetMap; Imbalanced learning; Random forest | |||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | |||||||||||||||||||||||||||
HGF - Program: | Aeronautics | |||||||||||||||||||||||||||
HGF - Program Themes: | air traffic management and operations | |||||||||||||||||||||||||||
DLR - Research area: | Aeronautics | |||||||||||||||||||||||||||
DLR - Program: | L AO - Air Traffic Management and Operation | |||||||||||||||||||||||||||
DLR - Research theme (Project): | L - Communication, Navigation and Surveillance (old) | |||||||||||||||||||||||||||
Location: | Jena | |||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Data Science Institute of Data Science > Citizen Science | |||||||||||||||||||||||||||
Deposited By: | Hu, Xuke | |||||||||||||||||||||||||||
Deposited On: | 14 Jan 2021 13:17 | |||||||||||||||||||||||||||
Last Modified: | 14 Jan 2021 13:17 |
Repository Staff Only: item control page