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ABSTRACT
The entrance of buildings is an important feature that connects their internal and ex-
ternal environments. Most frequently, automatic approaches for detecting building
entrances are based on street-level images, which, however, are not widely avail-
able. To address this issue, we propose a more general approach for inferring the
location of the main entrance of public buildings based on the association between
spatial elements extracted from OpenStreetMap. In particular, we adopt three bi-
nary classification approaches: Weighted Random Forest, Balanced Random Forest,
and SmoteBoost to model the association relationship. The features considered in
the classification are of two types: (1) intrinsic features derived from the footprint,
such as the distance to the centroid of the footprint, and (2) extrinsic features de-
rived from spatial contexts, such as the shortest path distance to the main roads.
Extensive experiments have been conducted on 320 public buildings with an average
perimeter of 350 meters. The experimental results showed that a mean linear dis-
tance error of 21 meters and a mean path distance error of 22 meters were achieved
by using the Weighted Random Forest and Balanced Random Forest models, ruling
out 90% of the incorrect locations of the main entrance at buildings. Our work finds
relevance, for example, in saving pedestrians’ way-finding efforts.

KEYWORDS
Main entrance tagging;OpenStreetMap; Imbalanced learning; Random forest

1. Introduction

The entrance of public buildings plays a vital role in connecting outdoor and indoor
spaces. Determining the location of the main entrance is essential in many location-
based service (LBS) applications, such as way-finding since it is normally the end
destination of outdoor way-finding (Zeng and Weber 2015). However, the entrance
information is missing on current mainstream map providers, such as Bing Maps and
Google Maps. This can lead to several issues (e.g., inaccurate navigation and mislead-
ing) when using these map services. For example, when following the planned route
by map providers to a certain building, users are often guided to the wrong location,
which is far away from the main entrance. Consequently, they need to spend even
more efforts to find the main entrance by themselves. Times way-finding efforts can be
saved and shorter and simpler routes can be derived if the main entrance of buildings
is a mapped feature. This is an unpleasant experience especially for the people with
mobility constraints because public buildings are normally complex and of large pro-
portions. Figure 1 shows two real examples when using Google Maps to plan a route
to a certain building. Realizing the importance of mapping the building entrance, the
OpenStreetMap (OSM) contributors have created a tag to represent the main entrance



Figure 1. Inaccurate and misleading navigation by Google Maps due to missing of
entrance information. Location tagged by black and red circle are planned target
point by Google Maps and true main entrance, respectively. The blue dotted line
represents the planned path by Google Map. The yellow line shows the extra path
taken to find the true entrance to the planned target location. The red dashed line

denotes the shortcut that is not found by Google Maps.

as a node with the OSM key ’entrance’ and value ’main’ (Goetz and Zipf 2011).
However, to the present date, only a small proportion of buildings on OSM have

an entrance tag feature. For instance, in the London area, there are only about 60
buildings that are tagged with the main entrance. This is because it is difficult for
volunteers to contribute with the entrance of the building in comparison to other fea-
tures, such as the buildings’ footprints and the venues’ names, which can be obtained
from personal experience, public information, and Bing satellite imagery. Only the
volunteers who are familiar with the building would mark the main entrance on OSM.
To overcome this challenge, some automatic solutions have been proposed to identify
the entrance of buildings from street-level images (Liu et al. 2014; Kang et al. 2010;
Liu et al. 2017) and remarkable tagging results have been achieved. However, the data
they leverage limits the applicability of the approach, as the street-level images that
cover a wide range of areas are not guaranteed to be available even from Google Street
View, which is the largest provider of street view images to date, specially outside
developed countries. Furthermore, the entrance of many buildings can not be directly
observed from streets due to the existence of obstacles or because the entrance does
not face any street.

To mitigate this gap, a more general and applicable main entrance tagging approach
for public buildings (e.g., hospital, office building, and museum) is proposed by lever-
aging OSM, which provides high-quality geospatial information in many regions, such
as the Europe and the United States (Hochmair et al. 2013) and is freely accessible.
The definition of public buildings might vary as counties. In this study, we follow the
specification of the OSM community 1, in which the public building is defined as the
building constructed as accessible to the general public with the OSM tag as ’build-
ing=public’, such as the town hall, police, courthouse, hospital, library, and museum.
The reason that we focus only on public buildings rather than private buildings such as
residential house, is that their shape is complex and large-scaled and they are the most
frequent route destinations. Therefore, to guide users to find the entrance of public
buildings is of larger public interest. Besides, this work focuses on the detection of the
main entrance, ignoring the possible secondary or ancillary entrances since in many

1https://wiki.openstreetmap.org/wiki/Tag:building%3Dpublic
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cases the public is not allowed to use secondary entrances, commonly used mostly for
special purposes, such as emergency evacuations. Therefore, from the perspective of
navigation, the main entrance is more important than the secondary entrance.

The idea of this study is inspired by the fact that there exists strong association
between the spatial (particular building) elements in the real world as the buildings are
man-made structures that are constructed with plans made by people. That is, given
partial spatial elements, the other element can be inferred based on the association
relationship (Hu, Fan, and Noskov 2018; Hu et al. 2019, 2020). Intuitively, the entrance
is associated with two kinds of spatial elements: (1) The location of the main entrance
of a public building is correlated with the shape of its footprint. For instance, the main
entrance is located normally near the centroid of the footprint, as shown in Figure 2a.
If the footprint is reflection symmetry, the main entrance is very likely located close
to the symmetry axis to maintain the symmetric characteristics of the building, as
shown in Figure 2b. Another example is that the main entrance sometimes is located
at the convex and concave edge of the footprint, which corresponds to the rain-shed,
independent vertical passage or entrance foyer. (2) The main entrance of a building
is correlated with its surrounding spatial contexts, such as the streets. Generally, the
main entrance should be easily accessed and observed from the streets, which often
has shorter path distance to the streets and more observable points from the street
than the other locations at the footprint, as shown in Figure 3.

(a) Entrance is close to centroid of footprint (b) Entrance is close to axis of symmetric footprint

Figure 2. Location of entrance is correlated with shape of footprint
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(a) Entrance is easily observed from roads (b) Entrance is easily accessed from roads

Figure 3. Location of entrance is correlated with spatial contexts of buildings

The main entrance tagging issue can be regarded as the association relationship
modeling issue, which is implemented through statistical learning. Specifically, by split-
ting the footprint into discrete equidistant points (also named samples), the task is
thus converted to identify which one is the most likely location of the main entrance
(positive). For each point, the corresponding intrinsic and extrinsic features are ex-
tracted by measuring the relationship between the samples and the footprint as well as
its spatial context, respectively. The proposed approach consists of two stages, namely,
model training and entrance tagging. During the training stage, three different classifi-
cation models are fitted to model the association relationship. They are the Weighted
Random Forest (WRF)(Effendy, Baizal et al. 2014), Balanced Random Forest (BRF)
(Khalilia, Chakraborty, and Popescu 2011), and the SmoteBoost (Chawla et al. 2002)
algorithms. The reason for testing and comparing these models is that they are robust
to class imbalance issues. During the tagging stage, the fitted model is used to calcu-
late the probability of assigning each sample in a test building as positive, and the one
with the highest probability is chosen as the estimated location of the main entrance.

The main contributions of this work are twofold:
(1). To the best of our knowledge, this work is the first to propose an automatic

approach to estimating the physical location of the main entrance of buildings based
only OSM data.

(2). Our proposed approach is broadly applicable, as it relies only on OSM data,
which is freely accessible and covers a wide range of areas in the world.

The remainder of this paper is structured as follows: In Section 2, we introduce the
relevant works. In Section 3, we present the workflow of the proposed approach and give
the details of each step. We evaluate the proposed approach through experiments on
320 public buildings in Section 4, and discuss relevant issues in Section 5. Conclusions
are drawn in Section 6.

2. Related works

We categorize the entrance detection approaches into two groups: door detection (in-
door) and entrance detection (outdoor) since to some degree an entrance is also a door
but the detection approach is different.

Door detection: Door detection approaches are widely investigated due to two
reasons. First, robots need to recognize the location of doors for autonomous naviga-
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tion. Second, indoor reconstruction solutions also need to detect the location of doors
to build a complete indoor navigation network for pedestrians. For instance, Murillo
et al. (2008) presented a technique for detecting doors using only visual information
for robot navigation. The probability distribution is learned in a parametric form from
a few reference images in a supervised setting. A model-based approach is used, where
the door model is described by a small set of parameters characterizing the shape and
the appearance of the object. The geometry of the door is specified by a small number
of parameters and the appearance is learned from the reference data. The constraints
of man-made environments were used to generate multiple hypotheses of the model
and the learned probability distribution was used to evaluate their likelihood. Zhao
et al. (2015) proposed a light-weight and broadly applicable door detection approach
based on the magnetometer embedded on a smartphone. It analyzes readings from
the built-in magnetic sensors since the anomalies or sharp fluctuations of magnetic
signals normally happened at doors. Nikoohemat et al. (2017) proposed using mobile
laser scanners for data collection. It can detect openings (e.g., windows and doors) in
cluttered indoor environments by using occlusion reasoning and the trajectories from
the mobile laser scanners. The results showed that using structured learning methods
for semantic classification is promising. Recently, Quintana et al. (2018) presented an
approach that detects open, semi-open and closed doors in 3D laser scanned data of
indoor environments. It integrates the information regarding of both the geometry
and colour provided by a calibrated set of 3D laser scanner and a colour camera.
The integration of geometry and colour makes it robust to occlusion and variations
in colours resulting from varying lighting conditions at each scanning location and
different scanning locations.

Entrance detection: Apart from door detection, a couple of automatic methods
have also been proposed to detect the entrance of buildings, which is the focus of this
work. The traditional ways to detect the entrance is through images analysis. That
is, the detection of entrance is treated as the issue of semantic tagging from images.
For instance, Liu et al. (2014) proposed a three-stage system that starts with a high-
recall entrance candidate extractor, which is followed by classifying candidates based
on local image features. The final stage fuses results from multiple views by using
Markov chain Monte Carlo to solve a Bayesian inference problem, and to select the
best set of entrances that explain the image of a facade. The system achieves a recall of
70% on a challenging data set of urban scene images. Kang et al. (2010) proposed an
approach to detecting the entrance of building for robot navigation based on the images
that can be collected in real-time by mobile robots during navigation. They adopted a
probabilistic model for entrance detection by defining the likelihood of various features
for entrance hypotheses. The basic idea is to exclude non-entrance regions in the
surface of a building, such as walls and windows, which are extracted from the image
of the surface. The reminding region is considered as the candidate of entrance, which
is then evaluated by their proposed probabilistic model. Recently, Talebi, Vafaei, and
Monadjemi (2018) presented a vision-based method for detecting building entrances
with outdoor images. They first converted the RGB image into gray-scale image, from
which the vertical and horizontal line segments can be detected by using Line Segment
Detector (LSD) algorithm. Then, the regions between the vertical lines were specified
and the features including height, width, location, color, texture and the number of
lines inside the regions are obtained. Finally, they used some additional knowledge such
as door existence at the bottom of the image and a reasonable height and width of a
door to decide if a door is detected or not. Different from the aforementioned works
that use manually defined features to detect entrance, Liu et al. (2017) proposed
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using random forest classifier to perform automatic feature selection and entrance
classification. The process of the algorithm is as follows: first, the scene geometry was
exploited and the multi-dimensional problem is reduced down to a one-dimensional
(1D) problem. Then, a rich set of discriminative image features for entrances was
explored according to constructed designs, specifically focusing on properties such
as symmetry and color consistency. Lastly, a joint model was formulated in three
dimensions (3D) for entrances on a given facade, which enables the exploitation of
physical constraints between different entrances on the same facade in a systematic
manner to prune false positives, and thereby selected an optimum set of entrances on
a given facade. The drawback of these works is that they rely on the stree-level image,
which can be obtained from some map providers, such as Google Street View and
through the cameras equipped on the robot during navigation. The street-level image
does not always contain the entrance of all the buildings since the entrance might not
face any street. Meanwhile, Google Street View covers only partial large cities in the
world. The robot-based solution is not applicable for pedestrian way-finding, which
needs to know the location of the main entrance in advance.

3. Approach

training

building

split footprint

extract feature
impute missing data

select strong 

negative samples 

fit model

   test 

building

split footprint

extract feature

impute missing data

calculate

probability

Training stage

Tagging stage

trained

 model
imputed

  data

estimated

  location

select most likely

positive sample

Figure 4. Workflow of proposed approach

As illustrated in Figure 4, the proposed approach consists of two stages: training
and tagging. In the training stage, the edges of each building are first split into single
points, also named samples. They are then tagged as positive (true main entrance)
and negative accordingly. The next step is to extract features for each sample by
measuring the relationship between the sample and the footprint (intrinsic features)
and the surrounding spatial entities (extrinsic features), such as the distance to the
centroid of the footprint and the shortest path distance to the main roads. However,
some negative samples are neighbors of the positive sample, which may cause the
mis-classification of the positive sample. To solve this issue, only the ‘strong’ negative
samples are used in the training data. The ‘strong’ negative samples are those whose
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physical or feature distance is far away from the positive sample. After collecting the
samples from all of the training buildings, the missing data of the training samples
would be filled out, which is caused by the lacking of some spatial entities around a
certain building. For instance, not all the buildings have main roads around. Finally,
a classification model that can deal with the unbalanced class issue is fitted based on
the training samples.

In the tagging stage, the footprint of a test building is split into single points and
the corresponding features are extracted in the same way as in the training stage.
The next step is to impute the missing data by using the strawman strategory (Tang
and Ishwaran 2017). Specifically, the missing value of a numerical feature is filled
out with the median value of the non-missing values of this feature in the training
samples. Likewise, the missing value of a categorical feature is filled out with the most
frequent value of the non-missing values of this feature in the training samples. Then,
the trained model is used to calculate the probability of assigning each sample to
positive or negative. Finally, the one with the highest positive probability among all
the samples in a building is chosen as the estimated location of the main entrance. In
the following sections, we will elaborate on the key steps of the training stage.

3.1. Data pre-processing

The input of the training stage is buildings. For each one, its external edges are first
split into smaller segments with an interval of three meters as the width of the main
entrance of public buildings is normally around three meters. By doing so, the segment
can approximately represent the main entrance. The segment whose length is below
three meters is treated as a complete segment. Then, the midpoint of the segment
is chosen as a sample (the candidate location of the main entrance). The one whose
parental segment contains the true main entrance is tagged as positive, and the others
are tagged as negative. We define the edge that contains a sample as the master edge of
the sample. The features of each sample is then extracted by measuring the relationship
between the sample and the footprint (intrinsic features) and the surrounding spatial
entities (extrinsic features), which will be elaborated in the following section. Figure 5a
shows the footprint of a building. Figure 5b shows the discretized result, from which
we can see: (1) the number of the negative sample is much larger than that of the
positive sample (only one); (2) the positive sample is physically surrounded by some
negative samples. If we fit a normal classification model with these samples, all the
test samples would most likely to be categorized as negative to achieve the highest
classification accuracy. However, what we expect is to correctly pick out the positive
samples from the negative ones.

To handle the inbalanced data issue, this work adopts three classification models
namely, SmoteBoost, Balanced Random Forest, and Weighted Random Forest. To
address the second issue, the negative samples that are close to the positive sample in
either physical or feature distance are ruled out from the training samples to reduce
the interference of the negative samples. That is, only the ‘strong’ negative samples
are preserved. The physical and feature distance thresholds are denoted by PT and
FT , respectively. The physical distance between two samples is defined as the shortest
linear distance along the footprint, as shown in Figure 10. The feature distance is
defined as the Euclidean distance of the feature vector of two samples. Note that
before calculating the feature distance, each variable in the vector is first normalized
by using the Min-Max Normalization method, as shown in Formula 1, limiting the
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value of all features to the range of zero and one. Figure 5c shows the selected ‘strong’
negative samples.

X ′ =
X −Xmin

Xmax −Xmin
(1)

(a) footprint of a building on

OSM

footprint
negative sample
positive sample

(b) discretization of footprint

footprint
strong negative sample
positive sample

(c) resampling of nagative

samples

Figure 5. Process of footprint split and sample extraction

After obtaining positive and ‘strong’ negative samples for all the training buildings,
the straw-man imputation strategy is adopted to deal with the missing data issue in
the training samples. Specifically, we fill out the missing value of a numerical feature
with the median value of the non-missing values of this feature in the training sam-
ples. Likewise, we fill out the missing value of a categorical feature with the most
frequent value of the non-missing values of this feature in the training samples. More
approaches that impute the missing data will be investigated in our future work, such
as KNN, missing forest, and multiple imputation by chained equations (MICE) (Tang
and Ishwaran 2017; Deng et al. 2016).

3.2. Feature extraction

This section introduces the procedure of extracting features for each sample in a
building. Given a building, its footprint and surrounding spatial contexts or entities
are obtained from OSM, on which the intrinsic and extrinsic features can be derived,
respectively. In total, we define 84 features. The complete features we use can be found
in the shared files.

3.2.1. Extrinsic feature

The spatial contexts include address street, main road, pedestrian way, service way,
railway, bicycle parking area, landmark, and postbox. Partial buildings have been tagged
with the address street. The key is ‘addr street’ in OSM and the corresponding value
is renamed as ‘addr street value’ in this work, based on which the address street of the
building are retrieved. The key and value of these contexts in OSM are given in Table
1. The relationship between the sample and the spatial contexts can be measured in
multiple ways, as shown in the first column of Table 2. Note that, we do not choose
the pathways connected to the building as the spatial context since it is too strong
features that indicate the location of the entrance, as shown in Figure 6.
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Figure 6. Pathway surrounded by blue rectangles is connected to buildings on OSM
with the connection point as the location of main entrance

Before introducing the specific features, we first define the outer perpendicular line
(OPL) and inner perpendicular line (IPL) of a sample, which are needed in defining
some features. OPL of a sample is the line with the sample as the start point, extending
along the line that is perpendicular to the master edge of the sample and deviating
from the building. Conversely, IPL is the line with the sample as the start point,
extending along the line that is perpendicular to the master edge of the sample and
toward the footprint. The OPL and IPL of a sample in Figure 5a are denoted by the
green and brown lines, respectively. The following measures are used to define the
external feature:

Shortest path distance: It refers to the shortest path distance from a sample to
multiple spatial contexts of the same type, such as multiple service ways. Normally, the
true sample (main entrance) can be easily accessed (with a shorter path distance than
other samples) from address streets and main roads. To calculate the path distance,

Table 1. OSM key and value of spatial entities used to extract external features

key value

address street name addr street value

main road highway
primary / secondary/ tertiary

/ unclassified/ residential

pedestrian way highway pedestrian

service way highway service

railway railway rail

bicycle parking area amenity bicycle parking

landmark

artwork type sculpture

tourism artwork

historic memorial

amenity fountain

man made water well

man made flagpole

postbox amenity post box
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the path obstacle is first extracted, including building, barrier, grass, water, railway,
and garden. Next, the spatial contexts in the form of line segments or polygons are
split into points at a certain interval. A small interval will cause a high computational
cost of the shortest path while a large value might cause the inaccurate computation
of the shortest path distance. Thus, in this study, a 5 meter interval is adopted. The
path distance from the sample to these context points is then calculated with the A-
star algorithm (Hart, Nilsson, and Raphael 1968), and among them the shortest path
distance is obtained.

Turning degree: It refers to the turning degree of the shortest path from a sample
to a certain spatial context. It is calculated by dividing the shortest path distance by
the euclidean distance from the sample to the target location on the shortest path.
The larger the value, the more turnings on the shortest path.

Accessible: It measures if a sample is accessible from a certain spatial context. It
can be obtained from the result of the shortest path distance.

Degree of visibility: It measures how easily a sample (candidate entrance) can be
observed from certain spatial contexts. Generally, the main entrance is easily observed
from main roads. The obstacles that hinder visibility include buildings and barriers
defined by the key of ‘barrier’ on OSM. To calculate the degree of visibility of a
sample, the spatial contexts (e.g., main roads) are first discretized into points at a
certain interval and the number of the points from which a sample can be directly
observed without obstruction is used as the degree of visibility. Likewise, a 5 meter
interval is adopted to achieve a balance between the computational cost and accuracy.

Visible: It measures if a sample is visible from a certain type of spatial contexts.
It can be derived from the result of the degree of visibility.

Euclidean distance: It measures the Euclidean distance between a sample and its
spatial contexts.

Table 2. Extrinsic feature extraction by measuring the relationship between samples
and spatial contexts

address

street

main

road

pedestrian

way

service

way
railway

bicycle

parking

area

landmark postbox

Shortest

path

distance (*)

X X X X X X

Accessible X X X X X X

Turning

degree
X X X X X X

Degree of

visibility (*)
X X X X

Visible X X X X X X X

Euclidean

distance (*)
X X

The other important extrinsic features are as follows:
Open area (*): It measures the size of an open area before a sample. To calcualte

the feature, the OPL of the sample is first obtained, which is followed by searching
all the intersection points between the OPL and obstacles. The open area then equals
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the shortest Euclidean distance between the intersection points and the sample. The
obstacle here refers to the building, grass, main road, barrier, water, and railway.

Distance to buildings(*): It measures the Euclidean distance from a sample
to the nearest building. It is calculated in the same way as Open area. The only
difference is that the obstacle here refers to buildings.

3.2.2. Intrinsic feature

Intrinsic features refer to the features extracted from the building itself, i.e., footprint.
Some important intrinsic features are as follows:

Distance to centroid (*): It represents the Euclidean distance from a sample to
the centroid of the footprint.

Proportion (*): It measures how close a sample is to the midpoint of its master
edge. It is calculated by dividing the distance between the sample and the midpoint
of its master edge by the length of the master edge. The value ranges from 0 to 0.5.

Existence of axis: It indicates if the reflection symmetry axis exists since not every
building is symmetric. For instance, the footprint in Figure 5b is reflection-symmetric
and the axis is the perpendicular bisector of the master edge of the positive sample.

Distance to reflection symmetry axis (*): It represents the perpendicular dis-
tance from a sample to the reflection symmetry axis of the footprint if the axis exists.

At intersected edge of axis (*): It indicates if a sample is located at the edge
that intersects the axis of the building if the axis exists.

Length of master edge (*): It represents the length of the edge that contains
the sample.

Face inner(*): It indicates if the OPL of a sample intersects the other edges of
the building (except the master edge). Normally, the OPL of the entrance sample does
not intersect the edges of the footprint, such as the positive sample in Figure 5b.

Concavity and convexity: It indicates if the master edge of a sample is concave
(0), convex(1), or neither (-1). An edge is defined as convex only when the inner angles
of the two endpoints of this edge approximate 90 degrees, while the neighboring two
angles approximate 270 degrees. In contrast, an edge is defined as concave only when
the two angles of this edge approximate 270 degrees, while the neighboring two angles
approximate 90 degrees. For instance, the master edge of the positive sample in Figure
5b is concave.

Opposite shape: It indicates if the opposite edge of the master edge of the sample
is concave (0), convex(1), or neither (-1). The opposite edge of an edge is defined as
the closest exterior edge of a building, which intersects the perpendicular bisector of
the edge.

Note that, for both intrinsic and extrinsic features, the one with the star symbol (*)
means that apart from the absolute measurements, the sorting result of measurement
of a sample among the total samples in the same building is also treated as features.
It measures if one sample is closer to some spatial contexts or easier to be observed
from some places than the other samples in the same building. Intuitively, the positive
sample (entrance) is closer to the centroid of a building than most of the negative
samples. The sorting result of each sample in a building, denoted by S = {s1, s2, ...sn}
is normalized, denoted by NS = {si/n}i∈[1,n]. si denotes the sorting result of i-th
sample, ranging from 1 to n, while n denotes the number of samples in a building. In
this way, the value of the feature is limited in the range of 0 and 1, making it globally
comparable.
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3.3. Classification models for imbalanced data

As we mentioned before, the positive sample is far less than the negative ones, which
causes imbalanced data issues (Sun, Wong, and Kamel 2009). The common ways
to deal with the issue include over-sampling the minority class, under-sampling the
majority class, and giving more weight to the minority class. This work adopts three
different classification models: SmoteBoost, Balanced Random Forest, and Weighted
Random Forest, which are the representative methods of the three strategies.

SmoteBoost: It was first proposed by Chawla et al. (2003) for countering imbal-
ance in a dataset, which combines the Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al. 2002) and Adaptive Boost (AdaBoost) (Schapire 2013).
Specifically, before each boosting step, a SMOTE resampling calculates new synthetic
examples for the minority class. The minority class is over-sampled by taking each
minority class sample and introducing synthetic examples from the k minority class
nearest neighbors. AdaBoost works to improve the performance of weak learners (poor
predictive models, but better than random guessing). It iteratively builds an ensemble
of weak learners by assigning a higher weight to samples that the current weak learner
misclassified during each iteration. This weight determines the probability that the
sample will appear in the training of the next weak learner. For this reason, boosting
algorithms like AdaBoost are particularly useful for class imbalance problems because
higher weight is given to the minority class at each successive iteration as data from
this class is often misclassified. More details of the AdaBoost can be found in (Chawla
et al. 2003).

Balanced Random Forest: Balanced Random Forest (BRF) is a variant of the
random forest by under-sampling the majority class in building each decision tree.
BRF algorithm consists of three steps. (1) For each iteration (building a tree) in
random forest, draw a bootstrap sample from the minority class and randomly draw
the same number of samples, with replacement, from the majority class. (2) Induce a
classification tree from the data to maximum size, without pruning. (3) Repeat the two
steps above for the number of trees desired. During the tagging stage, the predictions
of all the trees in the forest are aggregated to make the final prediction. More details
of the Balanced Random Forest can be found in (Khalilia, Chakraborty, and Popescu
2011).

Weighted Random Forest: Weighted Random Forest (WRF) is another variant
of random forest, which follows the idea of cost-sensitive learning. That is, a heavier
penalty would be placed on the misclassification of the minority class, by assigning the
minority class a larger weight (i.e., higher misclassification cost). The class weights are
used in two places of the RF algorithm. In the tree induction procedure, class weights
are used to weight the Gini criterion for finding splits. In the terminal nodes of each
tree, class weights are again taken into consideration. The class prediction of each
terminal node is determined by “weighted majority vote”; i.e., the weighted vote of
a class is the weight for that class times the number of cases for that class at the
terminal node. The final class prediction for RF is then determined by aggregating the
weighted vote from each tree, where the weights are average weights in the terminal
nodes. More details of Weighted Random Forest can be found in (Effendy, Baizal et al.
2014).
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4. Experiments

4.1. Experimental setting

We have collected 320 public buildings from seven German cities: Frankfurt (60),
Mannheim (28), Heidelberg (46), Karlsruhe (40), München (44), Stuttgart(38), Berlin
(40), and Köln (24). The digital in the parentheses denotes the number of buildings
collected in the corresponding city. The true main entrance of the buildings are iden-
tified in three ways. (1) On OSM, some buildings have been tagged with the main
entrance or entrance2. Then, the main entrance or the only entrance node of the
building is selected. (2) In some cases, the main entrance can be manually identified
by humans from the satellite images and Google Street View. (3) The main entrance
can be collected through site-survey if the first two ways fail. In the last two ways,
the prior knowledge about the entrance is utilized to distinguish if the entrance is the
main entrance or the ancillary entrance when more than one entrance is found. For
instance, the logo or information board of an institute normally appears around the
main entrance or it is more salient than the ancillary entrance in size and shape. We
use IGIS.TK and its spatial data model to export the OSM data of the seven cities
into the Spatialite database, from which the corresponding OSM entities around a
building are retrieved (Noskov and Zipf 2018). Specifically, the OSM elements (i.e.,
node, way, and relation) that locate in or intersect with the buffer of the building are
retrieved from the database. The buffer takes the main entrance of the building as
the center and 150 meters as the radius, which is large enough to contain the associ-
ated contexts of the building entrance. A larger buffer, however, might cause the high
computational cost since much more contexts would be analyzed. The corresponding
SQL script is as ’SELECT elements.id, AsGeoJson(Transform(geom,32630)),keys.txt,
vals.txt FROM elements JOIN tags ON elements.id=tags.id JOIN keys ON
tags.key = keys.rowid join vals on tags.val=vals.rowid WHERE MbrInter-
sects(Transform(Buffer(Transform(MakePoint(8.3728, 49.0159, 4326), 32630), 150),
4326),elements.geom)’. (8.372814, 49.015944) represents the latitude and longitude
coordinates of the main entrance of a building that should be modified as buildings
when querying the corresponding buffer. Based on the retrieved result, the required
OSM entities and spatial contexts of a building can be then extracted.

2https://wiki.openstreetmap.org/wiki/Key:entrance
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Figure 7. Distribution of area, perimeter, and edge number of test buildings

Furthermore, we analyze the distribution of the perimeter, area, and number of
edges of the total buildings, which is shown in Figure 7. The x-axis denotes the count
of the range of attributes. In each range, the open parenthesis means the start of the
range is exclusive and the close bracket means the end of the range is inclusive. Thus,
(0,2129] in Figure 7 (a) denotes the building whose area is larger than 0 and smaller
than or equals 2129 square meters. We can observe that the shape and size of the
buildings vary greatly. Then, the spatial contexts of the buildings and the symmetric
buildings (with axis) are analyzed. The occurrence frequency of different spatial con-
texts and the symmetric building are shown in Figure 8. We can see the missing data
issue is quite serious with only the frequency of the main road, service way, and ad-
dress street over 0.7, making the classification task much challenging. To know which
feature is important in recognizing the main entrance, we measured the importance
of each feature (84 in total) by calculating how much the accuracy decreases when
the feature is excluded in the random forest. From which, the top 20 most significant
features are picked out, and their normalized weights are shown in Figure 9. ‘cen-
troid sort’, ‘proportion’, ‘to centroid’, ‘main dis sort’, ‘b oa’, ‘service dis sort’, ‘ser-
vice ratio’, ‘oa sort’, ‘oa’, ‘address dis sort’, ‘b oa sort’, ‘main ratio’, ‘main vis sort’,
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‘main vis’, ‘service vis’, ‘service dis’, ‘main dis’, ‘service vis sort’, ‘address ratio’, and
‘oppo shape’ denote the sort of distance to centroid , proportion , distance to
centroid , sort of shortest path distance to main road , distance to nearest
building , sort of shortest path distance to service ways, turning degree of
shortest path distance to service ways, sort of open area , open area , sort of
shortest path distance to address street , sort of distance to nearest building ,
turning degree of shortest path distance to main road , sort of visibility de-
gree from main road , visibility degree from main road , visibility degree from
service way , shortest path distance to service way , shortest path distance to
main road , sort of visibility degree from service way , sort of turning degree
of shortest path distance to address street , and opposite shape , respectively.
They play the most significant role in identifying the location of the main entrance.
The axis related features are not ranked among the top 20 as we expected because
only a small proportion of buildings are symmetric.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of non-missing objects

service

post

landmark

main road

bicycle

pedestrain

axis

address

railway

Figure 8. Occurrence frequency of
spatial contexts and symmetric buildings

in test buildings
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Figure 9. Importance of top 20 features

4.2. Tagging accuracy

In this experiment, we compare the three classification models for the imbalanced class
issue and the general random forest model. A couple of important parameters need to
be set for our proposed solutions to achieve the optimal performance. Specifically, the
physical distance threshold (PT ) and the feature distance threshold (FT ) that are used
to select the ‘strong’ negative samples are set to 24 (m) and 0.04, respectively. For
the WRF approach, the important parameters include the number of trees (wt), the
maximum depth of the tree (wd), and the weight of the minority class compared to the
majority class (ww), which are set to 80, 12, and 160 (160:1), respectively. For the BRF
approach, the key parameters include the number of trees (bt) and the maximum depth
of the tree (bd), which are set to 140 and 14, respectively. For the SmoteBoost approach,
the key parameters include the number of new synthetic samples per boosting step
(ss), the maximum number of estimators (se) at which boosting is terminated, and the
number of the nearest neighbors that are used to generate new samples for a minority
class sample (sn), which are set to 130, 90, and 4, respectively. For the general RF
approach, the important parameters include the number of trees (rt) and the maximum
depth of the tree (rd) , which are set to 110 and 14, respectively. These approaches
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are implemented based on scikit and the imbalanced-learn package of Python.
The five-fold cross-validation is used to evaluate the approaches based on 320 public

buildings. That is, the 320 buildings are divided into five test groups with each con-
taining 64 buildings. In each test group, the 64 buildings are treated as the test set,
and the remaining 256 buildings are treated as the training set, in which the location
of the main entrance is known. We measure the deviation between the true entrance
and the estimated entrance in two ways. The first is the shortest linear distance
between them along the perimeter of a building polygon. The second is the shortest
path distance from the estimated entrance to the true entrance. Note that, due to the
existence of obstacles such as barriers and buildings, the path distance between two
locations might be much larger than their linear distance, as shown in Figure 10.

Figure 10. Two kinds of distance errors. In the left figure, the path distance is
smaller than the linear distance. In the right figure, the path distance is much larger

than linear distance due to the obstruction of buildings

In the Appendix, we present the tagging results of partial testing buildings by using
the four models. In the figures, the red square denotes the position of the true entrance,
while the brown upper-pointing triangle, the yellow star, the light blue diamond, and
the blue right-pointing triangle denote the estimated position of the entrance by WRF,
BRF, RF, and SmoteBoost, respectively. The complete data set, python code, and
tagging results have been uploaded online. Figure 11 shows the cumulative linear
distance error of the total five test groups. We can see WRF and BRF achieve the
best tagging result with an average error of around 21 meters. 30% of the buildings are
correctly tagged with the linear distance error at 0 meters, and in 80% of the cases,
the distance error is below 30 meters. For SmoteBoost and the general random forest
approaches, the mean error is around 35 meters. BRF and WRF can better deal with
the imbalanced class issue than the SmoteBoost and RF approaches in this context.
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Figure 12. CDF of path distance error of four classification models

However, the liner distance error between the estimated and the true entrance does
not reflect the actual walking distance that users need to take from the estimated
entrance to the true entrance due to the existence of obstacles, including buildings
and barriers (e.g., fence) in this context, as shown in Figure 10. Therefore, we further
calculate the shortest path between the estimated and true entrance for the five test
groups. If the true entrance is unreachable from the estimated entrance, the shortest
path distance is set to 1000 meters. Figure 12 shows the CDF of the path distance error
of the four approaches. We can see, BRF and WRF still achieve a promising result,
with a mean error at 22 meters, and in 80% of the cases, the path distance error is
below 30 meters. However, for SmoteBoost and the general RF approaches, the path
distance error becomes larger at 38 and 46 meters, respectively, compared to their liner
distance errors. We believe that a distance deviation at around 30 meters would not
cause the failure of finding the true entrance because humans have powerful spatial
cognition capability (Foo et al. 2005). For instance, pedestrians can easily find the
entrance when they are following the route to the estimated entrance if the estimated
and the true entrance is not far away.

Furthermore, we analyzed the test buildings whose linear distance error is over 60
meters. We found that three reasons mainly cause the large tagging error. The first
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is inaccurate or incomplete OSM data. For instance, the building in Figures (k) and
(u) of the Appendix have a tagging error over 60 meters. A fence in front of the
estimated entrance location of Figure (k) by WRF is missing on OSM, leading to the
estimated entrance easily accessed from roads. Likewise, a deep hole in front of the
estimated entrance location of Figure (u) is missing on OSM. The second reason is
that the ancillary entrance sometimes shows similar patterns to the main entrance such
that the model misclassifies the ancillary entrance as the main entrance, as shown in
Figures (s) and (ad) of Appendix, where the estimated location by WRF is close to the
ancillary entrance. The third reason is that there are always numbers of exceptional
buildings that do not follow the general layout principles of the main entrance.

Finally, we analyze the ranking of positive probability assigned to the true entrance
sample among the total samples in a building. The ranking result are grouped into two
types. The first is the absolute ranking result among all the samples with the value
ranging from 1 to N, where N represents the number of samples in a building. Figure
13 shows the CDF of the absolute ranking result achieved by the four approaches. Still,
BRF performs the best. In 55% of the cases, the true positive sample is ranked among
Top 4. In 75% of the cases, it is ranked among Top 10. The second is the relative
ranking result, which considers the varying number of samples in test buildings. It
is calculated by dividing the absolute ranking result by the total number of samples
in the corresponding building, limiting the value in the range of zero to one. Figure
14 shows the CDF of the relative ranking result achieved by the four approaches.
Likewise, BRF performs the best. In 50% of the cases, the true entrance sample is
ranked among the top 2%. In 74% of the cases, it is ranked among the top 10%. The
ranking result looks promising, which proves that the trained models (i.e., BRF and
WRF) are robust and effective.

To achieve the best classification accuracy, the general RF algorithm would mainly
learn the patterns of the negative samples and classify nearly all the samples as nega-
tive since the negative ones are much more than positive ones. It pays little attention
on the positive samples. Therefore, it achieved the worst tagging accuracy. The Smote-
Boost approach uses the neighboring positive samples of a positive sample to synthesize
new positive samples to keep the balance between the positive and negative samples.
It to a certain degree can mitigate the imbalance issue. However, the synthesized pos-
itive samples normally contain noise, which would decrease the final tagging accuracy.
BRF undersamples the negative samples while WRF gives the minor class more weight
in classification. Both of them can deal with the imbalance issue and meanwhile do
not introduce noisy samples. Therefore, they achieve better tagging performance than
SmoteBoost and RF.
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Figure 13. CDF of absolute ranking result of estimated positive probability of true
entrance by four classification models
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4.3. Impact of key parameters on F1 score and tagging error
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Figure 15. Impact of key perameters on F1 score of different models

The impact of the key parameters of the four classification algorithms on the F1 score
is first analyzed, which is shown in Figure 15. The F1 score is calculated by counting
the total true positives, false negatives, and false positives, without considering the
imbalance issue. From the figure, we can see that in average RF achieves a higher F1
score than the other three algorithms. The model would classify most of the examples
as negative to achieve the highest classification accuracy, which leads to a high F1 score.
The tree number (rt) and the maximum depth of the tree (rd) have a small impact on
the F1 score since the imbalance issue remains. For the SmoteBoost approach, se is set
to 210. A downward trend can be observed as the increase of the generated samples
per positive sample (ss). As the number of positive samples is approximating that of
negative samples, the model would classify more samples as positive. This leads to the
decrease of the F1 score considering the fact that the negative samples in the data set
are far more than the positive samples. For WRF approach, wt is set to 70. Likewise,
the F1 score shows a substantial downward trend as the increase of the weight (ww)
since more negative samples are classified as positive. For BRF approach, the negative
samples are under-sampled. Thus, an equal weight is assigned to the negative and
positive samples, which lead to a lower F1 score compared with the SmoteBoost and
RF algorithms. It can be also observed that as the increase of the tree number (bt)
and maximum tree depth (bd), the F1 score increases and remains stable when the two
parameters are over 100 and 8, respectively. In conclusion, it is difficult to evaluate
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the performance of the classification models through the F1 score when the class is
highly imbalanced especially in our issue where only the relative probability matters.
Therefore, the impact of the key parameters of the four classification algorithms on
the linear distance error is also analyzed, which is shown in Figure 16. In general,
WRF and BRF achieve a lower tagging error than RF and Smoteboost algorithms.
For the WRF approach, wt is set to 70. As the increase of the weight (ww), the tagging
error is decreasing and remains stable when it is over 100. A larger weight assigned to
the positive samples can make the model pay more attention to the positive samples.
Likewise, the tagging error decreases as the increase of the maximum tree depth (wd)
and remains stable when it is over 9. The deeper the tree, the more features could
be utilized. The BRF approach achieves a similar tagging performance to WRF and
the change of the tree number and maximum depth does not affect the tagging error
dramatically although a slight downward trend can be observed as the increase of the
tree number. Compared to BRF, the RF approach is dramatically affected by the tree
number and maximum depth. The tagging error decreases as the increase of rd and
remains stable when the value is over 7. For Smoteboost, se is set to 210. No stable
trend can be observed from the result of the Smoteboost algorithm with the change
of (ss) and (sn). This is mainly because the synthesizing process can mitigate the
imbalance issue but meanwhile introduce incorrect positive samples to the training
set.
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Figure 16. Impact of key perameters on liner distance error of different models
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5. Discussions

Main entrance assumption: One of the assumptions of the proposed solution is
that there is one and only one main entrance in a public building. This is due to two
reasons. First, in most of the cases, this assumption holds. Second, it is challenging
to detect a variable number of main entrances in a public building if we are uncertain
how many main entrances exist. However, when collecting the test buildings, we also
found that a public building could be comprised of multiple departments with each
having one house number and one main entrance. Such buildings are beyond the scope
of this study. However, this will be dealt with in the future work considering the house
number tagged on OSM since each house number corresponds to a main entrance. That
is, multiple main entrances can be identified from a building if the tagged location of
the house number is known.

Fusion of OSM and satellite imagery: As we have mentioned in the exper-
imental section, the tagging error is often caused by missing or incomplete data in
OSM. This greatly reduces the applicability and robustness of the proposed solution.
To mitigate the issue, in the future, we plan to use the satellite imagery (e.g., from
Bing map) to provide more cues about the possible locations of the main entrance.
For instance, in Figure 17, an open space is in front of the main entrance, which can
be identified from the satellite imagery. However, by using only the data from OSM,
a big tagging error is produced, as shown in Figure (v) of Appendix. One of the cues
of the impossible entrance position is the front green space, as shown in Figure 18,
which can be observed from the satellite imagery. However, with only the OSM data,
the estimated entrance by BRF is located at the green space, as shown in Figure (ab)
of Appendix. The possible solution is to combine the manually defined features ex-
tracted from OSM, and the features automatically learned from the satellite imagery
with deep learning in an integrated model. The other reason that the satellite imagery
should be introduced is because in certain countries, such as China, the OSM data is
poor with coarse road networks and little building information except the footprint
and name. In this case, the satellite imagery can play dominant roles in predicting the
building entrance.

Variation of building style in time and space: We tested our approaches with
the buildings in only Germany. The buildings from the other countries are not consid-
ered, such as in Asian counties where the building styles might be totally different and
the entrance location might also vary dramatically. Therefore, we cannot guarantee
that the trained model can be applied to predict the main entrance of public build-
ings in other countries. However, we still believe this work is valuable since a local
model such as for Germany is still useful, considering the large number of buildings in
Germany. To achieve a globally applicable model, the spatial location properties (e.g.,
country and continent) of buildings could be added to the feature set and the buildings
across different countries and continents are trained together. By doing so, the trained
model can adapt to the change of spatial location. In this study, the construction time
of the buildings is ignored. However, it can also be introduced to make the model more
general that can accurately predict the main entrance of buildings across both space
and time given abundant annotated data.
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Figure 17. Blue square indicates an
open space where the main entrance is

located

Figure 18. Yellow square denotes a
green space where the main entrance is

not likely to be located

6. Conclusion

To mitigate the misleading and inaccurate navigation issues caused by the missing
main entrances of public buildings on current map providers (e.g., Google Maps and
OSM), we proposed a broadly applicable main entrance tagging approach based only
on the association between spatial elements extracted from OSM. Three classification
algorithms have been applied to model the association relationship and deal with the
imbalanced class issue, namely WRF, BRF, and SmoteBoost. Experimental results
show that WRF and BRF have a low tagging error in both linear distance and shortest
path distance errors, which we believe can greatly save pedestrians’ effort in finding
the main entrance. We also found the most frequent tagging error is normally caused
by inaccurate and incomplete OSM data. Realizing this interesting finding, we will
investigate the possibility of automatically reporting erroneous data on OSM based
on the tagged entrance since the big tagging error might be related to erroneous OSM
data. Apart from this, in the future, we plan to combine the satellite imagery to
provide further evidences about the possible location of the main entrance to mitigate
the large tagging error and to overcome the poor OSM data challenge faced in certain
countries.

7. Data and codes availability statement

The data and codes that support the findings of this study are
available in entrance tagging with the identifier at the private link
https://figshare.com/s/00612ebbc369a980bd7b
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Figure 0. Tagging result of partial test buildings
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