Gawlikowski, Jakob and Schmitt, Michael and Kruspe, Anna and Zhu, Xiao Xiang (2020) On the fusion strategies of Sentinel-1 and Sentinel-2 data for local climate zone classification. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, pp. 1-4. IGARSS 2020, 2020-09-26 - 2020-10-02, Virtual event. doi: 10.1109/igarss39084.2020.9324234. ISBN 978-172816374-1. ISSN 2153-6996.
PDF
680kB |
Official URL: https://igarss2020.org/Papers/ViewPapers.asp?PaperNum=3443
Abstract
Local Climate Zone (LCZ) classification is the most commonly used scheme to analyze how local urban morphology affects the climate of local areas. Classification methods are often based on remote sensing data or on a fusion of several data sources. In this study, the effects of different fusion strategies of optical and synthetic aperture radar (SAR) data on the accuracy of LCZ classifications are investigated. The data processing is implemented with a convolutional neural network (CNN), where until a fusion layer, separate data sources are processed separately on branches. Strategies of splitting the data into branches and the effects of different fusion stages are compared, together with approaches based on sums of independent classifiers. For our setting, the stage of fusion does not seem to have a big influence on the accuracy. The results of this study contribute to a better understanding of cooperative usage of multispectral and SAR data.
Item URL in elib: | https://elib.dlr.de/139441/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | On the fusion strategies of Sentinel-1 and Sentinel-2 data for local climate zone classification | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | October 2020 | ||||||||||||||||||||
Journal or Publication Title: | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/igarss39084.2020.9324234 | ||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||||||
ISBN: | 978-172816374-1 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | local climate zone classification, Data Fusion, Fusion Network | ||||||||||||||||||||
Event Title: | IGARSS 2020 | ||||||||||||||||||||
Event Location: | Virtual event | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 26 September 2020 | ||||||||||||||||||||
Event End Date: | 2 October 2020 | ||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||||||
Location: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Institute of Data Science > Datamangagement and Analysis | ||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Deposited On: | 18 Dec 2020 12:27 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:40 |
Repository Staff Only: item control page