Gawlikowski, Jakob und Schmitt, Michael und Kruspe, Anna und Zhu, Xiao Xiang (2020) On the fusion strategies of Sentinel-1 and Sentinel-2 data for local climate zone classification. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Seiten 1-4. IGARSS 2020, 2020-09-26 - 2020-10-02, Virtual event. doi: 10.1109/igarss39084.2020.9324234. ISBN 978-172816374-1. ISSN 2153-6996.
PDF
680kB |
Offizielle URL: https://igarss2020.org/Papers/ViewPapers.asp?PaperNum=3443
Kurzfassung
Local Climate Zone (LCZ) classification is the most commonly used scheme to analyze how local urban morphology affects the climate of local areas. Classification methods are often based on remote sensing data or on a fusion of several data sources. In this study, the effects of different fusion strategies of optical and synthetic aperture radar (SAR) data on the accuracy of LCZ classifications are investigated. The data processing is implemented with a convolutional neural network (CNN), where until a fusion layer, separate data sources are processed separately on branches. Strategies of splitting the data into branches and the effects of different fusion stages are compared, together with approaches based on sums of independent classifiers. For our setting, the stage of fusion does not seem to have a big influence on the accuracy. The results of this study contribute to a better understanding of cooperative usage of multispectral and SAR data.
elib-URL des Eintrags: | https://elib.dlr.de/139441/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | On the fusion strategies of Sentinel-1 and Sentinel-2 data for local climate zone classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Oktober 2020 | ||||||||||||||||||||
Erschienen in: | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/igarss39084.2020.9324234 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||||||
ISBN: | 978-172816374-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | local climate zone classification, Data Fusion, Fusion Network | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2020 | ||||||||||||||||||||
Veranstaltungsort: | Virtual event | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 26 September 2020 | ||||||||||||||||||||
Veranstaltungsende: | 2 Oktober 2020 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Jena , Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||
Hinterlegt am: | 18 Dez 2020 12:27 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags