Cao, Yun and Wang, Yuebin and Peng, Junhuan and Qiu, Chunping and Ding, Lei and Zhu, Xiao Xiang (2021) SDFL-FC: Semi-supervised Deep Feature Learning with Feature Consistency for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 59 (12), pp. 10488-10502. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3044094. ISSN 0196-2892.
PDF
- Published version
11MB |
Official URL: https://ieeexplore.ieee.org/document/9307259
Abstract
Semisupervised deep learning methods (DLMs) can mitigate the dependence on large amounts of labeled samples using a small number of labeled samples. However, for semisupervised deep feature learning (SDFL), the quality of extracted features cannot be well ensured without a certain amount of labeled samples. To address this issue, we develop the SDFL method with feature consistency (SDFL-FC) for the hyperspectral image (HSI) classification. The SDFL-FC first adopts the convolutional neural network (CNN) to extract spectral-spatial features of HSI and then uses the fully connected layers (FCLs) to model the feature consistency. Moreover, two constraints that enforce both the feature consistency of single pixel (FCS) and feature consistency of group pixels (FCG) are introduced to obtain the representative and discriminative features. The FCS is achieved by the generative adversarial network (GAN) regularization, which can reconstruct the original data from extracted features. The FCG is based on the assumption that the features of group pixels should have similar characteristics within a superpixel, which is embedded in each FCL. The final FCL outputs the class labels, and the cross-entropy (CE) loss is calculated with the labeled samples, while the two losses of FCS and FCG are calculated with all the training samples (both labeled and unlabeled). SDFL-FC integrates the FCS, FCG, and CE loss into a unified objective function and uses a customized iterative optimization algorithm to optimize it. Experiments demonstrate that the SDFL-FC can outperform the related state-of-the-art HSI classification methods.
Item URL in elib: | https://elib.dlr.de/139436/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | SDFL-FC: Semi-supervised Deep Feature Learning with Feature Consistency for Hyperspectral Image Classification | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | December 2021 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 59 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.3044094 | ||||||||||||||||||||||||||||
Page Range: | pp. 10488-10502 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | hyperspectral, deep feature learning, image classification | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||||||
Deposited On: | 18 Dec 2020 14:00 | ||||||||||||||||||||||||||||
Last Modified: | 01 Feb 2023 03:00 |
Repository Staff Only: item control page