elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SDFL-FC: Semi-supervised Deep Feature Learning with Feature Consistency for Hyperspectral Image Classification

Cao, Yun und Wang, Yuebin und Peng, Junhuan und Qiu, Chunping und Ding, Lei und Zhu, Xiao Xiang (2021) SDFL-FC: Semi-supervised Deep Feature Learning with Feature Consistency for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 59 (12), Seiten 10488-10502. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3044094. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
11MB

Offizielle URL: https://ieeexplore.ieee.org/document/9307259

Kurzfassung

Semisupervised deep learning methods (DLMs) can mitigate the dependence on large amounts of labeled samples using a small number of labeled samples. However, for semisupervised deep feature learning (SDFL), the quality of extracted features cannot be well ensured without a certain amount of labeled samples. To address this issue, we develop the SDFL method with feature consistency (SDFL-FC) for the hyperspectral image (HSI) classification. The SDFL-FC first adopts the convolutional neural network (CNN) to extract spectral-spatial features of HSI and then uses the fully connected layers (FCLs) to model the feature consistency. Moreover, two constraints that enforce both the feature consistency of single pixel (FCS) and feature consistency of group pixels (FCG) are introduced to obtain the representative and discriminative features. The FCS is achieved by the generative adversarial network (GAN) regularization, which can reconstruct the original data from extracted features. The FCG is based on the assumption that the features of group pixels should have similar characteristics within a superpixel, which is embedded in each FCL. The final FCL outputs the class labels, and the cross-entropy (CE) loss is calculated with the labeled samples, while the two losses of FCS and FCG are calculated with all the training samples (both labeled and unlabeled). SDFL-FC integrates the FCS, FCG, and CE loss into a unified objective function and uses a customized iterative optimization algorithm to optimize it. Experiments demonstrate that the SDFL-FC can outperform the related state-of-the-art HSI classification methods.

elib-URL des Eintrags:https://elib.dlr.de/139436/
Dokumentart:Zeitschriftenbeitrag
Titel:SDFL-FC: Semi-supervised Deep Feature Learning with Feature Consistency for Hyperspectral Image Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cao, YunNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wang, YuebinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Peng, JunhuanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Qiu, ChunpingTechnical University MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ding, LeiNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Dezember 2021
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:59
DOI:10.1109/TGRS.2020.3044094
Seitenbereich:Seiten 10488-10502
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:hyperspectral, deep feature learning, image classification
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Bratasanu, Ion-Dragos
Hinterlegt am:18 Dez 2020 14:00
Letzte Änderung:01 Feb 2023 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.