Lee, Jongseok and Humt, Matthias and Feng, Jianxiang and Triebel, Rudolph (2020) Estimating Model Uncertainty of Neural Networks in Sparse Information Form. In: 37th International Conference on Machine Learning, ICML 2020. Proceedings of Machine Learning Research. 37th International Conference on Machine Learning (ICML), Vienna, Austria. ISBN 978-171382112-0. ISSN 2640-3498.
PDF
1MB |
Official URL: https://www.webofscience.com/wos/woscc/full-record/WOS:000683178505077
Abstract
We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs) where the parameter posterior is approximated with an inverse formulation of the Multivariate Normal Distribution (MND), also known as the information form. The key insight of our work is that the information matrix, i.e. the inverse of the covariance matrix tends to be sparse in its spectrum. Therefore, dimensionality reduction techniques such as low rank approximations (LRA) can be effectively exploited. To achieve this, we develop a novel sparsification algorithm and derive a cost-effective analytical sampler. As a result, we show that the information form can be scalably applied to represent model uncertainty in DNNs. Our exhaustive theoretical analysis and empirical evaluations on various benchmarks show the competitiveness of our approach over the current methods.
Item URL in elib: | https://elib.dlr.de/135531/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Other) | ||||||||||||||||||||
Title: | Estimating Model Uncertainty of Neural Networks in Sparse Information Form | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 13 July 2020 | ||||||||||||||||||||
Journal or Publication Title: | 37th International Conference on Machine Learning, ICML 2020 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Publisher: | Proceedings of Machine Learning Research | ||||||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||||||
ISBN: | 978-171382112-0 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Bayesian Deep Learning, Uncertainty Quantification, Information Theory | ||||||||||||||||||||
Event Title: | 37th International Conference on Machine Learning (ICML) | ||||||||||||||||||||
Event Location: | Vienna, Austria | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Intelligente Mobilität (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||
Deposited By: | Lee, Jongseok | ||||||||||||||||||||
Deposited On: | 21 Jul 2020 09:45 | ||||||||||||||||||||
Last Modified: | 20 Mar 2023 10:57 |
Repository Staff Only: item control page