Lee, Jongseok und Humt, Matthias und Feng, Jianxiang und Triebel, Rudolph (2020) Estimating Model Uncertainty of Neural Networks in Sparse Information Form. In: 37th International Conference on Machine Learning, ICML 2020. Proceedings of Machine Learning Research. 37th International Conference on Machine Learning (ICML), 2020-07-13, Vienna, Austria. ISBN 978-171382112-0. ISSN 2640-3498.
PDF
1MB |
Offizielle URL: https://www.webofscience.com/wos/woscc/full-record/WOS:000683178505077
Kurzfassung
We present a sparse representation of model uncertainty for Deep Neural Networks (DNNs) where the parameter posterior is approximated with an inverse formulation of the Multivariate Normal Distribution (MND), also known as the information form. The key insight of our work is that the information matrix, i.e. the inverse of the covariance matrix tends to be sparse in its spectrum. Therefore, dimensionality reduction techniques such as low rank approximations (LRA) can be effectively exploited. To achieve this, we develop a novel sparsification algorithm and derive a cost-effective analytical sampler. As a result, we show that the information form can be scalably applied to represent model uncertainty in DNNs. Our exhaustive theoretical analysis and empirical evaluations on various benchmarks show the competitiveness of our approach over the current methods.
elib-URL des Eintrags: | https://elib.dlr.de/135531/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Anderer) | ||||||||||||||||||||
Titel: | Estimating Model Uncertainty of Neural Networks in Sparse Information Form | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 13 Juli 2020 | ||||||||||||||||||||
Erschienen in: | 37th International Conference on Machine Learning, ICML 2020 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Verlag: | Proceedings of Machine Learning Research | ||||||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||||||
ISBN: | 978-171382112-0 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Bayesian Deep Learning, Uncertainty Quantification, Information Theory | ||||||||||||||||||||
Veranstaltungstitel: | 37th International Conference on Machine Learning (ICML) | ||||||||||||||||||||
Veranstaltungsort: | Vienna, Austria | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsdatum: | 13 Juli 2020 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Intelligente Mobilität (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
Hinterlegt von: | Lee, Jongseok | ||||||||||||||||||||
Hinterlegt am: | 21 Jul 2020 09:45 | ||||||||||||||||||||
Letzte Änderung: | 15 Okt 2024 08:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags