Shi, Yilei and Li, Qingyu and Zhu, Xiao Xiang (2019) BFGAN - Building Footprint Extraction from Satellite Images. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, pp. 1-4. IEEE. JURSE 2019, 2019-05-22 - 2019-05-24, Vannes, FR. doi: 10.1109/JURSE.2019.8809048.
PDF
14MB |
Official URL: https://ieeexplore.ieee.org/document/8809048
Abstract
Building footprint information is an essential ingredient for 3-D reconstruction of urban models. The automatic generation of building footprints from satellite images presents a considerable challenge due to the complexity of building shapes. In this work, we have proposed improved generative adversarial networks (GANs) for the automatic generation of building footprints from satellite images. We used a conditional GAN with a cost function derived from the Wasserstein distance and added a gradient penalty term. The achieved results indicated that the proposed method can significantly improve the quality of building footprint generation compared to conditional generative adversarial networks, the U-Net, and other networks. In addition, our method nearly removes all hyperparameter tuning.
Item URL in elib: | https://elib.dlr.de/134416/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||
Title: | BFGAN - Building Footprint Extraction from Satellite Images | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | May 2019 | ||||||||||||||||
Journal or Publication Title: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/JURSE.2019.8809048 | ||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | building footprint, generative adversarial networks (GANs), conditional generative adversarial networks (CGANs), Wasserstein generative adversarial networks (WGANs) | ||||||||||||||||
Event Title: | JURSE 2019 | ||||||||||||||||
Event Location: | Vannes, FR | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 22 May 2019 | ||||||||||||||||
Event End Date: | 24 May 2019 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben hochauflösende Fernerkundungsverfahren (old) | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Deposited On: | 12 Mar 2020 11:44 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:37 |
Repository Staff Only: item control page