Shi, Yilei und Li, Qingyu und Zhu, Xiao Xiang (2019) BFGAN - Building Footprint Extraction from Satellite Images. In: 2019 Joint Urban Remote Sensing Event, JURSE 2019, Seiten 1-4. IEEE. JURSE 2019, 2019-05-22 - 2019-05-24, Vannes, FR. doi: 10.1109/JURSE.2019.8809048.
PDF
14MB |
Offizielle URL: https://ieeexplore.ieee.org/document/8809048
Kurzfassung
Building footprint information is an essential ingredient for 3-D reconstruction of urban models. The automatic generation of building footprints from satellite images presents a considerable challenge due to the complexity of building shapes. In this work, we have proposed improved generative adversarial networks (GANs) for the automatic generation of building footprints from satellite images. We used a conditional GAN with a cost function derived from the Wasserstein distance and added a gradient penalty term. The achieved results indicated that the proposed method can significantly improve the quality of building footprint generation compared to conditional generative adversarial networks, the U-Net, and other networks. In addition, our method nearly removes all hyperparameter tuning.
elib-URL des Eintrags: | https://elib.dlr.de/134416/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||
Titel: | BFGAN - Building Footprint Extraction from Satellite Images | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Mai 2019 | ||||||||||||||||
Erschienen in: | 2019 Joint Urban Remote Sensing Event, JURSE 2019 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/JURSE.2019.8809048 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | building footprint, generative adversarial networks (GANs), conditional generative adversarial networks (CGANs), Wasserstein generative adversarial networks (WGANs) | ||||||||||||||||
Veranstaltungstitel: | JURSE 2019 | ||||||||||||||||
Veranstaltungsort: | Vannes, FR | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 22 Mai 2019 | ||||||||||||||||
Veranstaltungsende: | 24 Mai 2019 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||
Hinterlegt am: | 12 Mär 2020 11:44 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags