Kossyk, Ingo und Marton, Zoltan-Csaba (2019) Discriminative regularization of the latent manifold of variational auto-encoders. Journal of Visual Communication and Image Representation, 61, Seiten 121-129. Elsevier. doi: 10.1016/j.jvcir.2019.03.008. ISSN 1047-3203.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
3MB |
Offizielle URL: http://dx.doi.org/10.1016/j.jvcir.2019.03.008
Kurzfassung
We present an approach on training classifiers or regressors using the latent embedding of variational auto-encoders (VAE), an unsupervised deep learning method, as features. Usually VAEs are trained using unlabeled data and independently from the classifier, whereas we investigate and analyze the performance of a classifier or regressor that is trained jointly with the variational deep network. We found that models trained this way can improve the embedding s.t. to increase classification performance, and also can be used for semi-supervised learning, building up the information extracting latent representation in an incremental fashion. The model was tested on two widely known computer vision benchmarks, and its generalization power was evaluated on an independent dataset. Additionally, generally applicable statistical methods are presented for evaluating similarly performing classifiers, and used to quantify the performance increase. The general applicability and ease-of-use of deep learning approaches allows for a wide applicability of the method.
elib-URL des Eintrags: | https://elib.dlr.de/128125/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Discriminative regularization of the latent manifold of variational auto-encoders | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Mai 2019 | ||||||||||||
Erschienen in: | Journal of Visual Communication and Image Representation | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 61 | ||||||||||||
DOI: | 10.1016/j.jvcir.2019.03.008 | ||||||||||||
Seitenbereich: | Seiten 121-129 | ||||||||||||
Verlag: | Elsevier | ||||||||||||
ISSN: | 1047-3203 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Variational auto-encoder Regularization Knowledge representation Perceptual data compaction Semi-supervised learning Statistical performance analysis | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt), R - Intuitive Mensch-Roboter Schnittstelle [SY] | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||
Hinterlegt von: | Marton, Dr. Zoltan-Csaba | ||||||||||||
Hinterlegt am: | 28 Jun 2019 13:00 | ||||||||||||
Letzte Änderung: | 31 Okt 2023 14:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags