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Abstract

We present an approach on training classifiers or regressors using the latent

embedding of variational auto-encoders (VAE), an unsupervised deep learning

method, as features. Usually VAEs are trained using unlabeled data and in-

dependently from the classifier, whereas we investigate and analyze the perfor-

mance of a classifier or regressor that is trained jointly with the variational deep

network. We found that models trained this way can improve the embedding s.t.

to increase classification performance, and also can be used for semi-supervised

learning, building up the information extracting latent representation in an in-

cremental fashion.

The model was tested on two widely known computer vision benchmarks,

and its generalization power was evaluated on an independent dataset. Addi-

tionally, generally applicable statistical methods are presented for evaluating

similarly performing classifiers, and used to quantify the performance increase.

The general applicability and ease-of-use of deep learning approaches allows for

a wide applicability of the method.
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statistical performance analysis

1. Introduction

Deep learning (DL) methods became wide-spread after dataset sizes and

computing power increased enough to allow for training several large layers.

Most methods rely on data with ground truth labels, and pre-trained networks

exist for some domains (e.g. RGB data), that can be fine-tuned or otherwise5

adapted to new problems. However, this is not available for sensing modalities

that are novel, not widely used by the DL community, or limited/no training

data is available (e.g. depth, audio, tactile, force-torque, hyperspectral, bio-

chemical, etc.), as well as in novel application domains (e.g. space, medical,

underwater, etc.).10

An advantage of unsupervised methods is their capacity to learn efficient cod-

ings of unlabeled data instances or streams. One class of unsupervised methods

that has recently gained a lot of interest is the variational auto-encoder (VAE),

which gives more control of influencing the latent representation by incorporat-

ing a statistical prior on the underlying distributions. This prior can act as a15

compensation for lack of data, focusing the learning problem to adjusting the

representation rather than learning it from scratch.

In this paper we investigate further how additional semantic information of

the data, e.g. labels, can aid in improving the latent representation for fulfilling

a functional objective. Hence, we evaluate the effect of training classifiers or20

regressors on the latent embedding of VAE jointly with the generative model.

We investigate two different possible architectures and show empirical results of

classification accuracy in comparison to a common variational model that can be

used for inference. We investigate the effect of applying what we call discrimina-

tive regularization on the latent embeddings of a variational auto-encoder and25

introduce the Discriminatively Latent Regularized Variational Auto-Encoder

(DLR-VAE) – see fig. 1. In summary, our main contributions are:

• We propose and evaluate the DLR-VAE concept in comparison with com-
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Figure 1: A variational auto-encoder with an additional classifier realized with two fully

connected layers for the encoder, decoder and classifier modules.

mon classification schemes that use VAEs as feature detectors or for in-

ference.30

• We show the effects of regularization with a discriminative network on the

latent embedding of variational auto-encoders in the scope of classification

and regression problems. Our empirical evaluation shows performance

that is comparable to state of the art results of similar models. For the

MNIST [26] dataset we found that the model achieves a new state of the35

art result for models that only use fully connected layers and do not use

data augmentation/distortions.

• We demonstrate how DLR-VAE can be used for semi-supervised learning,

where knowledge from labeled and unlabeled sets of samples is acquired

incrementally, and compacted in the probabilistic latent representation.40

• Due to the relatively small differences between the decoupled and the

jointly trained models, we employ statistical techniques to evaluate the
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significance of the improvement. We hope that this will aid others in the

field, since results on benchmarks and test datasets get tighter as the 100%

mark is approached with more complex/fine-tuned methods.45

The latent manifold of VAEs can be used efficiently for training classifiers

or regressors. For this purpose the auto-encoder is usually trained separately in

an unsupervised fashion and the encoder is used as a feature extractor, whereas

in our approach we train the unsupervised model jointly with a supervised deep

discriminative network. We draw our motivation for this approach from two50

main assumptions: The stochastic nature of a variational auto-encoder acts as

a regularization for the classifier when learning a low dimensional embedding of

the input data and the gradients of the discriminative part of the model feed

back into the latent embedding of the encoder of the variational auto-encoder.

We found that these models generalize better by a slight margin and can be55

used for efficient classification and regression on streaming data in an online

fashion.

We show empirical results on the MNIST, SEMEION [4] and SVHN [31]

datasets, and evaluate the statistical significance of the improvement in clas-

sification accuracy in comparison to common variational models that can be60

used for inference. The use of computer vision benchmarks is motivated by the

fact that both fully connected and convolutional layers can be tested on them,

and that the deep learning field is heavily focused on vision problems. How-

ever, MNIST and SEMEION type of data can easily come from pressure sensor,

SVHN (Google’s Street-View House Numbers) type e.g. from reading product65

labels, and the concept can be applied to many different data sources thanks

to the end-to-end trained nature of deep learning, which allows it to be easily

deployed in different domains.

The presented method was already used for material state/type classification

by an industrial robot, based on structure-borne sound, with different applica-70

tion scenarios in the area of robust manipulation for autonomous manufactur-

ing [32]. There, the latent representation that was learned while using data
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labels for a regularizing effect showed similar clustering and regressions proper-

ties to the reproducible examples on public data that is presented in this article.

This concise information representation enabled us to distinguish 8 materials in75

the audio stream generated by touching or gripping different parts, and even to

draw conclusions about geometric properties.

2. Related Works

2.1. Generative Autoencoder Architectures

The concept of using deep neural networks (DNN) for the training of vari-80

ational models has been proposed independently by two research groups. The

principal contribution was the so called reparametrization trick, a mathemati-

cal trick in order to enable backpropagation through stochastic layers in deep

neural networks [18, 35].

A different concept of a generative autoencoder based on a cost function85

using the Wasserstein distance has been shown to be effective by Tolstikhin

et al. [36].

2.2. Semi-supervised learning with Variational Autoencoders

Kingma et al. [19] continued to show that the probabilistic nature of the pro-

posed methods can be used for semi-supervised learning and demonstrate that90

it is possible to untangle properties of the training data, for example class infor-

mation and style. Maaløe et al. [27] carried that concept further by adding an

additional auxiliary stochastic variable and propose auxiliary directed graphical

models (ADGM). They show state-of-the-art results on several semi-supervised

classification tasks in their work. Abbasnejad et al. [1] present a method for95

semi-supervised learning inspired by the concept of ensembles of experts using

variational autoencoders.

2.3. Flows

Kingma et al. [20] showed how to improve the ability of VAEs to model more

complex data distributions by applying inverse autoregressive flow in a VAE with100
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multiple stages of stochastic layers in combination with residual blocks [12] for

feature extraction. A similar concept is reported by Tomczak and Welling [37]

for applying the Householder Flow to a VAE.

2.4. Generative Adversarial Networks

Generative adversarial nets (GAN) have been proposed by Goodfellow et al.105

[11] and they show that two competing neural networks, a classifier and a gen-

erator that tries to fool the former into misclassification, can learn a powerful

generative model. Makhzani et al. [28] apply this concept of adversarial training

to auto-encoders and show that it acts as a regularization on the latent coding.

2.5. Regularizing Variational Autoencoders110

A closely related idea to ours can be found in the work by Lamb et al. [25],

where a pre-trained classification network is used to regularize and refine the

reconstruction of an unsupervised variational model. However, in contrast to

the herein presented work, the regularization is performed on the whole network.

2.6. Normalization115

Exponetial linear units have been proposed in [7] as an alternative to the

combination of using rectified linear units (RELu) and Batch Normalization

[16] for speeding up convergence during training of deep neural networks. In

[21] the concept of ELUs is refined and the sELU (scaled exponential linear

unit) is proposed that enable deep neural networks to provide inherent self120

normalization.

2.7. State of the art for classification architectures

Residual neural networks [12] are considered as the state of the art DNN ar-

chitecture for feature extraction and have been proven to set the state of the art

for classification purposes on common benchmark datasets like CIFAR-10/100125

[22] [23] and Imagenet [8] in terms of classification error. They are based on

the concept of introducing skip connections between layers that enable infor-

mation flow through very deep network architectures. Densenet [14], Mobilenet
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[13] or Condensenet [15] show different network architectures where the opti-

mization criteria are either parameter count, memory footprint, computational130

complexity or inference time while maintaining reasonable accuracy.

In summary, the DLR-VAE idea can be combined with a wide range of

advancements in the DL field, depending on the application scenario and the

available data.

3. Theoretical Foundations135

This section will lay out the mathematical and technical definitions of the

model we are investigating in this work. We assume to be given N data pairs

(X,Y) = {(x1, y1), ..., (xN , yN )} where xi ∈ RD represents a single data sample

of the multidimensional input data and yi,∈ 1, ..., L represents the respective

class label out of L classes. For the following formulations we assume the class140

label to represented as one-hot vectors. We will omit the index i whenever it

is clear that we refer to the corresponding formulation regarding only a single

datapoint. Similar to [18] we define the generative model as follows:

p(z) = N (z|0, I); pθ(x|z) = L(x; z, θ) (1)

where L(x; z, θ) is a suitable likelihood function depending on the nature of the

underlying data model. Common models are the binary log cross entropy for145

Bernoulli distributions or the negative log likelihood for Gaussian distributed

data. We use non-linear functions:

f(x, φ); g(z, θ) (2)

in order to estimate the moments of the underlying probability distributions.

These non-linear functions resemble the encoder and decoder of the variational

auto-encoder and are learned by deep neural networks (DNN) with parameters150

φ and θ respectively. Additionally, we define a discriminative DNN denoted by:

h((µz, log(σ2
z)), ξ) (3)
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with parameters ξ which acts as a classifier or regressor. This discrimnative

network receives as an input a concatenation of the statistical moments µz

and log(σ2
z) that are estimated by the recognition model f(x, φ). We train

h((µz, log(σ2
z)), ξ) in a joint fashion with the recognition and generative net-155

works, respectively. Therefore, the discrimnative loss acts as an additional reg-

ularization on the moments of the recognition DNN. For classification we use

the softmax activation:

σ(ẑ)j =
eẑj

L∑
c=1

eẑc
, forj = 1, ..., L (4)

for the last layer of the discriminative DNN, where ẑ represents the unscaled

logits output of the last layer. Hence, in the case of a classification problem the160

loss of the discriminative network is then defined as the cross entropy of the

true class label y ∈ {0, 1} to the estimated probability ŷ for class k ∈ L:

H(pL, qL) = −
L∑
k=1

yk log ŷk + (1− yk) log (1− ŷk) (5)

where pL represent the true probabilities of observing the classes and qL the

probabilities of observing the predictions. The predictions are determined by

the classifier, hence ŷ = h((µz, log(σ2
z)), ξ).165

In the case of a regression problem we use the standard mean square error

formulation as a loss function instead of (5). Note that both additional losses are

not real probability measures however we found that they still act as regularizers

in the loss formulation of the final model.

3.1. Variational Evidence Lower Bound (ELBO)170

Variational models in DL are based on the idea of approximating the marginal

log-likelihood of an observable random variable x which can be rewritten as sum

over the joint probabilities of x with an additional non-observable, latent vari-

able z (where θ and φ are trained parameters):
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log pθ(x) = log
∑
z

pθ(x, z) (6)

By multiplying with qφ(z|x)/qφ(z|x), applying the chain rule and the Jensen175

inequality, eq. 6 can be reformulated as follows:

log
∑
z

pθ(x, z) ≥
∑
z

qφ(z|x)log
pθ(z)

qφ(z|x)
+ log pθ(x|z) (7)

Thus, per definition of the Kullback-Leibler (KL) divergence and the expectation

operator, the ELBO is defined as:

LELBO(θ, φ; x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)] (8)

This ELBO formulation can now be used as an optimization criterion where the

required parameters of the probability distributions are estimated with DNNs.180

The ELBO as formulated above exhibits a large variance when used directly

during training of a VAE, resulting in unstable or diverging training behav-

ior. Kingma and Welling [18] and Rezende et al. [35] independently presented

a differentiable procedure which they call the reparametrization trick by rep-

resenting the stochastic variable z with a deterministic variable z = gθ(ε,x),185

where ε is an auxiliary random variable usually drawn from a zero mean and

unit variance normal distribution N (0, 1). Assuming that z is Gaussian dis-

tributed z ∼ p(z|x) = N (µz, σ
2
z), the reparametrization is z = µz +σz� ε. This

leads to a stochastic gradient auto-encoding variational Bayes.

3.2. Discriminative Latent Manifold Regularization190

When applying the ELBO and the reparametrization trick, θ and φ are

learned by DNNs. To perform classification or regression using VAEs as feature

extractors one can:

1. Train the generative model with a VAE in an unsupervised fashion, learn-

ing the parameters φ and θ of the encoder/inference network and de-195

coder/generative network respectively.
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2. Transform the training data of a labeled training dataset to the lower

dimensional latent manifold which is parameterized via the moments es-

timated by the encoder f(x, φ) as defined in eq. (2).

3. Train a classifier or regressor (for example a DNN with one or multiple200

layers) in a supervised fashion with labeled data on the estimated moments

by f(x, φ) of the embedding of the input data.

In this work we are investigating incorporating the training loss of a deep

classifier into the loss function of the VAE. Therefore, the resulting deep neural

network consists of a VAE and an additional classifier realized as a single- or205

multilayer deep neural network. The whole model is trained jointly, therefore,

according to the chain rule, the cost/objective function to train the network is:

C = LELBO(θ, φ; x) + p(y, f(x, φ))

= −DKL(qφ(z|x)||p(z)) + Eqφ(z|x)[log pθ(x|z)] +H(pL, qL)
(9)

Hence, H(pL, qL) acts as an additional regularizer on the encoder together with

the KL divergence term. This should, in addition to the probabilistic prior p(z),

force the latent representation to converge to a task specific optimized topology.210

In accordance to [18] we draw one sample from p(z) in our experiments.

4. Model and Methods

The basic concept we propose is illustrated in fig. 1. The discriminative

part of the model is trained with the output of f(x, φ), which are the estimated

moments µz and the log-variance log σ2
z for the stochastic embedding variable215

z in case of a normally distributed posterior. Instead of fully connected layers,

convolutional neural networks (CNN) can be used for the encoder and decoder,

too [24, 34]. We assume a normally distributed prior and posterior with zero

mean and unit variance for the latent representation, therefore, an analytical

solution for the KL divergence exists:220
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−DKL =
1

2

J∑
j=1

(1 + log((σj)
2)− (µj)

2 − (σj)
2) (10)

where J denotes the dimensionality of the latent manifold z. Depending on the

data two different models for the reconstruction probability distributions can be

applied. In the case of a multivariate Bernoulli distribution it takes the form:

log p(x|z) = −
D∑
k=1

xk log x̂k + (1− xk) · log(1− x̂k) (11)

where x̂k are the estimated outputs of the last layer of the decoder network for

one data sample transformed with the sigmoid activation function. When we225

model the data as continuous Gaussian variables two final layers are fed with the

output of the preceding layer in parallel in order to estimate the reconstruction

parameters µ and log σ2 required for the calculation of the log likelihood of a

normal distribution with a diagonal covariance matrix:

log p(x|z) = log N (x;µ, σ2I) (12)

4.1. Fully Connected Encoder and Decoder230

In analogy to the work of Kingma and Welling [18] and in order to make com-

parisons fair our baseline model consists only of fully connected layers for the

encoder and decoder network. The encoder is a deep neural network with two

fully connected layers with exponential linear units (ELU) as activation func-

tions [7] throughout the whole network. We found ELU’s to perform equally235

well as other common state of the art normalization methods like batch nor-

malization [16] during our experiments. We can also confirm the statement by

the authors of [16] that combining ELU’S with batch normalization did not

improve the training procedure in our experiments. The application of ELU’s

for training a variational model has also been shown to be beneficial by the240

authors of [20]. The last two layers of the encoder are fed in parallel with the

output of the preceding layer and estimate the mean and log-variance of the
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latent probability distribution with linear activation functions. In addition to

using the estimated mean and log-variance for the reparametrization to form

the stochastic representation z they are used to train the classifier jointly with245

the variational auto-encoder. The decoder also consist of two fully connected

layers with the same size as the encoder layers with one final layer to estimate ei-

ther the reconstruction in the form of the Bernoulli distribution in accordance to

eq. 11 or with two layers estimating the parameters of the Gaussian distribution

for eq. 12.250

4.2. Encoder and Decoder with Convolutions

In computer vision or image recognition tasks, convolutional layers have been

shown to be superior to fully connected layers in deep learning. When used in

variational auto-encoders, CNNs can act as an efficient feature extractor and

when used together with pooling layers generalize well over spatial variations of255

the data. As other existing works show the effectiveness of CNN’s in variational

auto-encoders we chose to investigate the effect of discriminative regularization

with this architecture, too.

The convolutional variational auto-encoder (CVAE) we use consists of three

convolutional layers in the encoder and four convolutional layers in the decoder.260

In the encoder the convolutions are followed by two fully connected layers in

order to estimate the parameters of a Gaussian prior for the latent manifold

z, similar to the architecture in sec. 4.1. The decoder first transforms the

latent representation to an appropriate dimensionality using a fully connected

layer. We use a combination of convolutional layers with 2× 2 unpooling layers265

[33]. We assume that RGB pixel values are of continuous normally distributed

nature (except in the case of the MNIST dataset where data is assumed to be

binary) we use two convolutional layers in order to estimate the parameters of

the reconstruction probability distribution at the top of the variational auto-

encoder tower. Please see fig. 2 for a schematic of the architecture. We use270

ELU activation functions except at the final two layers of encoder and decoder,

respectively.
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Figure 2: VAE model with convolutional layers in the encoder and decoder stages. The

convolutional layers are combined with maxpooling and unpooling layers in the encoder and

decoder networks, respectively. The discriminative network is realized as a two-layer DNN.

Here the CVAE for continuous normally distributed data is shown. In the case of binary data

that underlies a Bernoulli distribution the decoder has only one last convolution layer with

the sigmoid activation function according to eq. 11.

4.3. Semi-supervised Learning

An interesting feature of the DLR-VAE is that it can be used for semi-

supervised learning tasks with minor modifications when only a subset of the275

training data is labeled. For the purpose of description of the training procedures

we define an iteration during training to be one step of optimization (for example

by stochastic gradient descent or using ADAM or comparable optimizers) with

one minibatch. Consequently, an epoch is defined as the count of iterations

necessary so that the model sees all samples contained in the training dataset280

once. The following two methods are performed during training once per epoch.

Hence, switching between labeled and unlabeled subsets of training data as

well as the respective two different cost functions that are used for optimization

happens once in each epoch. The model is trained according to the following two

procedures for 1000 epochs. Please see section 5.1.3 for a detailed description285

of the setup we used for training in our experiments.
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• Train the model by applying two different cost functions each epoch. In

the first part of the epoch train with the labeled subset and use the cost

function of eq. 9 then, in the second part, train the model with the re-

maining unlabeled data using the formulation of the ELBO cost function290

as shown in eq. 8. We call this model SS0. When investigating this train-

ing procedure we also tried to alternatively first optimize the model on

the full unlabeled dataset during the first part of the epoch followed by

training with the labeled part in the same epoch. We found that this did

not produce different results in our experiments.295

• Train the model in the first step with the labeled subset. Then, in the

same epoch, use the model to predict the labels of all remaining unlabeled

training data. In a third step, the model is optimized in the same epoch

using the predictions as labels for the unlabeled subset and applying the

cost function of eq. 9. We call this model SS1.300

5. Experiments

We evaluated both approaches, the fully connected and convolutional DLR-

VAE, on the common benchmark datasets MNIST and SVHN. For the exper-

iments we trained all models for 1000 full training epochs. In order to achieve

a fair comparison we kept the network fixed, therefore, the layer/neuron count305

was exactly the same for the VAE+DNN and the DLR-VAE models with the

only difference that the former was trained in a two stage training process and

the later was trained jointly. We kept the learning rates fixed for each problem

domain and used the same activation function (ELU) throughout all models.

As features the estimated µz and log(σ2
z) were concatenated to form a feature310

vector for training the discriminator either for VAE+DNN or DLR-VAE result-

ing in 2nz features. We used ADAM for optimization with default parameters

[17].
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5.1. MNIST

For MNIST we trained all models with the full training data of 60000 training315

samples. For test evaluation we used only the test dataset which consists of

10000 samples. A batch size of 100 and a learning rate of 3e-4 was used.

5.1.1. Fully Connected Layers

For the fully connected model the VAE’s encoder and decoder consisted of

two fully connected layers with 600 neurons each. MNIST images are binary,320

therefore we assume a Bernoulli distribution for reconstruction by the decoder.

The latent dimensionality was chosen to be 50. The discriminative part of the

model consists of two layers with 50 neurons. The last layer’s activation func-

tion is the softmax function whose output is used to calculate the logarithmic

softmax-binary crossentropy as a classification loss.325

5.1.2. Convolutional Layers

The architecture of the CVAE follows the general model as shown in fig. 2.

The encoder’s three convolutional layers were implemented with 64× 64× 128

output filters, a kernel size 3×3 and a symmetric stride of 1. The latent manifold

z had 50 dimensions. In the decoder a fully connected layer increases the 50330

dimensions of the latent manifold for the following convolutions. The mapping

corresponds to 128 filters and 7×7 input size. The output of the fully connected

layer is then used as input for three convolutional layers that were implemented

with 64× 64× 1 output filters, a kernel size of 3× 3 and a stride of 1. The last

convolutional layer’s activation function is a sigmoid and the ELU activation335

function is used throughout the model.

5.1.3. Semi-supervised Learning

For an evaluation of the performance of the DLR-VAE in semi-supervised

learning tasks we chose to use the fully connected model which was also used

for the evaluation on the fully labeled MNIST training dataset. We randomly340

draw class-balanced subsets of labeled data with 100, 600, 1000 and 3000 labeled
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examples for the experiment and repeated the training process four times. We

then calculated the mean performance of the training process. The models were

trained for 1000 epochs with a learning rate of 3e-4.

5.1.4. Computational Complexity345

As the training time is not a critical measure that has to be kept low when

thinking about complexity in the application of DNNs, we regard only the com-

putational complexity during the test phase in the following paragraph. We

will in this section limit the theoretical complexity considerations to depend on

the test sample count only as the amount of neurons and activations that need350

to be calculated differ neglectable between the compared models. Let Ntest be

the number of test samples and L the number of classes in the problem. Then

the complexity of the DLR-VAE is O(Ntest), thus being only dependent on the

number test samples (it is not dependent on the number of classes). For the M2

model it isO(L∗Ntest) because inference is performed by maximum likelihood or355

maximum a posteriori estimation. For the M1 model it is O(Ntest). Hence, the

stacked complexity for the M1+M2 model is O(Ntest)+O(L∗Ntest). Therefore,

the complexity grows linear with L for the M1+M2 model, even when taking into

account that the evaluation with the M2 model is done on the low-dimensional

embedding of the M1 model.360

5.2. SVHN

On the SVHN dataset we used the training data in combination with the

extra data which results in 604388 training samples. For testing we used the

26032 test samples. We preprocessed the training data with ZCA whitening with

a regularization of ε = 0.01 and we chose not to apply any data augmentation,365

therefore the input of the model was the 3072 whitened features of an SVHN

RGB image.

5.2.1. Fully Connected Layers

The layers of the encoder and decoder consisted of 2000 neurons. The di-

mensionality of the latent manifold z was chosen to be 200. Again, we assume370
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a Gaussian prior with zero mean and unit variance for the latent coding and

that whitened pixel values of RGB images are continuous random normally dis-

tributed variables. The discriminative network has two layers with 200 neurons

each.

5.2.2. Convolutional Layers375

For the CVAE we used a similar architecture as for the MNIST CVAE ex-

periments. However, the input now consists of RGB images, therefore, the input

convolutions are applied on the 3 color channels. Two convolutional layers that

output 3 color channels are used for the calculation of the reconstruction cost.

The dimensionality of the latent variable z was chosen to be 200. According380

to the other models presented in this work we set the neuron count for the

discriminative network to 200, too.

5.3. Results

The test errors of all trained models are shown in tbl. 1. We compare the

test error of the vanilla VAE when used as a feature extractor for classification385

with a separate classifier, the DLR-VAE and the M2 model as proposed by

Kingma et al. [19]. We chose the M2 model because it relies on a different

evaluation scheme that follows the paradigms of Maximum Likelihood testing

or Maximum a posteriori testing. According to the results we reason that the

stochastic nature of the VAE leads to a regularization effect when training a390

DLR-VAE. Using the fully connected model trained on MNIST the DLR-VAE

(1.13% test error) models generally perform better than the decoupled trained

vanilla VAE+DNN counterpart (1.73% test error), which can also be seen on

the evolution of the test error during training of both models in fig. 3 (left).

However, the DLR-VAE is outperformed on the MNIST classification task395

by the M2 model when only fully connected layers are used for the encoder and

decoder (however, the difference is not statistically significant since the bounds

overlap). We reason that this might be due to the effect of the untangling of class

and style information. On the other hand, when we do not preprocess the data
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Figure 3: Test error over epochs trained (EWMA50 denotes the Exponential Weighted Moving

Average over 50 Samples) on MNIST (left, CVAE right) and SVHN (middle)

(except normalization), the M2 model shows rather questionable performance400

on the SVHN dataset when only fully connected layers are used (55.34% error

on the test data set) and is clearly outperformed by the other models, with

the DLR-VAE showing the best performance in our experiments (DLR-VAE:

12.25%, VAE+DNN: 12.46%). This is also supported by the evolution of the

error during training, shown in fig. 3 (middle).405

We preprocessed the SVHN dataset with ZCA whitening. Additionally, we

investigated a model trained with data preprocessed by a principal component

analysis (PCA) and dimensional reduction. In these experiments we reduced

the feature dimensionality to 600 principle components. When trained on the

reduced SVHN dataset using PCA the DLR-VAE achieves 13.65% test error,410

the VAE+DNN performs reasonably worse with 19.50% test error and the M2

model achieved 19.06% therefore being slightly better than the former. We

reason that the loss of “locality” of the features when PCA is used leads to a

slightly worse performance than when ZCA is used as preprocessing step. The

bad test performance of the M2 model, however, when ZCA features are used415

remains subject to further investigation.

We performed the experiments using CVAEs using only the vanilla VAE+DNN

and the DLR-VAE models. The results show that the DLR-VAE outperforms

the decoupled approach on the MNIST dataset with a test error of 0.74%,

showing performance that is comparable to the state of the art. The vanilla420

VAE+DNN, when trained in a two stage process, shows an error that is 1.01%.

Again, the evolution of the test error during training is shown in fig. 3 (right).
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On the SVHN dataset the differences between both models are more minute with

only 0.03% of difference. Additionally, the performance using convolutional net-

works is only slightly better than when fully connected layers are used. Whether425

this is due to the low-complexity convolutional architecture we used for the en-

coder and decoder or due to the assumption of a diagonal covariance matrix

for the stochastic layer remains subject for further investigation. Because of

architectural reasons it is difficult to compare the M2 model to the other two

models in a fair manner, therefore, we omit the evaluation of the M2 model with430

convolutional VAE’s.

In order to validate the generalization ability of the models we tested the

CVAE based models that were trained on MNIST on the SEMEION dataset.

SEMEION is an handwritten digits dataset similar to MNIST. The digits of the

SEMEION dataset have been resized to 20×20 pixels using bilinear interpolation435

and the center of mass according to the pixels of each image has been centered

in a 28×28 image in order to adjust the format as given by the MNIST dataset.

However, during the creation of the original SEMEION dataset the aspect ratio

of the images is not preserved. Moreover, the dataset consists of samples that

were either written slowly and precise or quick with minimum precision. Many440

of the samples are also cropped. These factors make the dataset challenging to

be tested with the models that were trained on MNIST, resulting in decreased

performance, but in our opinion give a good indication of generalization perfor-

mance. The convolutional DLR-VAE achieves 13.31% error on this independent

dataset while the decoupled model 14.95%.445

5.3.1. Effects of Discriminative Regularization on the Latent Manifold

In order to illustrate the regularization effect of training a DLR-VAE we

trained a vanilla VAE and a DLR-VAE model on the MNIST dataset with a

latent variable z with two dimensions. The resulting latent manifold clusters of

the training dataset are shown in fig. 4 (VAE, DLR-VAE with softmax and cross450

entropy loss function for classification, and DLR-VAE performing regression on

the class label, as an illustrative example). The latent coding of the DLR-VAE
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Table 1: Test errors of the fully connected (fc) and convolutional (conv) VAE models on dif-

ferent datasets (with upper and lower bounds given by Jeffreys intervals having 95% Bayesian

credibility, as described in subsection 5.4); best results marked with bold

Model MNIST-fc SVHN-fc MNIST-conv SVHN-conv SEMEION /w MNIST-conv

VAE+DNN 1.73% 12.47% 1.01% 12.22% 14.95%

95% bounds 1.49–2% 12.08–12.87% 0.83–1.32% 11.83–12.63% 13.25–18.75%

DLR-VAE 1.13% 12.25% 0.74% 12.19% 13.31%

95% bounds 0.94–1.35% 11.87–12.66% 0.59–0.92% 11.8–12.59% 11.71–15.04%

M2 0.87% 55.34% – – –

95% bounds 0.7–1.07% 54.36–56.31% – – –

Figure 4: Comparison of the parameter µ of the latent embeddings of a VAE+DNN (left) and

DLR-VAE (middle) for classification, and of a DLR-VAE, where (as an illustrative example)

a regression on the class label is performed. The colors denote the class labels.

has been regularized by the classifier or regressor, respectively. We used a two-

layer fully connected neural network with only one neuron per layer for the toy

regression problem. The regularizing effect of this regressor forces the latent455

manifold to sort the points according to the label on one of the axes of the

latent variable. We reason that the shape/style-dependent variance of the data

is mostly represented on the first dimension of the latent variable and the class

dependent variance on the second.

5.3.2. Semi-supervised Learning460

The results of the experiments regarding semi-supervised learning are shown

in fig. 5. We compare our proposed models SS0 and SS1 to the models M1+M2

and standalone M2 according to the results shown in Kingma et al. [19]. It

is interesting to note that the performance of model SS1 is significantly better
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than SS0 and comparable to the M2 model in the case of only 100 or 600 labels465

used during training. We reason that the model is able to learn additional

information from the “guessing” stage were the unlabeled data is evaluated

with the current learning state according to the labeled data available.

In the case of 1000 available labels the M2 model performs slightly better

than the SS1 model and in the case of 3000 labels the SS1 model outperforms470

the M2 model. The M1+M2 model shows the most consistent and accurate

results, albeit being computationally most complex, and requires longer training

as two models need to be trained. The results encourage us that the DLR-VAE

can be feasibly used for semi-supervised learning tasks. An advantage of the

DLR-VAE is that in the case of a problem with a large amount of different475

class labels it is computationally less complex than the M2 or M1+M2 model

during inference. This is an important feature for application scenarios where

computational resources are limited and for time-critical applications.

5.4. Significance Evaluation

Since we see the same effect over different experiments, it is already a strong480

indication that the results are not due to chance, but we also apply statistical

methods to show this. The variance of the performance can be estimated by

bootstrapping, and cross-validation can simulate the effect of new data, but

the most important performance measure is the performance on independently

acquired test data (the SEMEION dataset in our case). As classifiers get better,485

the offered improvements diminish, risking to be purely due to chance and not

generalize. Therefore, approaches presented below can be of general use when

evaluating different classifiers as well.

The most straightforward way to compare the performance of two methods,

is to test whether their confusion matrices differ more than it would be expected490

by chance. Thus, the null hypothesis is that the two methods produce the same

proportion of values in the cells, which can be checked by performing Fishers’s

exact test [9, 10]. Since we are dealing with multiclass prediction, it has to be

applied to the contingency tables (i.e. matrices which are larger than 2×2), but
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Figure 5: Performance of SS0 and SS1 in the semi-supervised training scenario on MNIST

with different numbers of labeled training samples. See Kingma et al. [19] for M2 and M1+M2.

the test works for such cases as well. It assumes a (multivariate) hypergeometric495

distribution of the data, practically meaning that the methods predict a fixed

number of samples in the different classes (but this number can differ between

the classes). This is not guaranteed in our case, but since the performance is so

close to each other (and to 100%), it is only a minor deviation. Due to memory

limitations we had to fall back to the approximation of the test results using a500

Monte Carlo simulated hypergeometric test according to Mehta and Patel [30].

Under certain conditions the Pearson-Cochran chi-square test is a very good

and efficient approximation both for the binary and multiclass cases [6].

Another option is to compare the values in the two contingency tables cell

by cell, and check how much better they are for one method versus the other.505

Of course the values on the diagonal and the off-diagonal ones must be stored

with different signs s.t. the pairwise differences indicate improvement in the

same direction. This has some redundancy, as for example a difference in one

misclassification is counted twice (once on the diagonal and once off-diagonal).

However, the general trend of the differences can be checked with a Wilkoxon510

Rank Sum test, and even confidence intervals can be computed [2]. It is ap-
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plicable here because we have paired measurements of the same cells, and this

test compares the median difference to a given value. In our case, we define

the null hypothesis as the median difference being 0, and try to reject it with

a one-sided test, in order to see how much better DLR-VAE is. This is a non-515

parametric test, i.e. it has no assumptions on the distribution of the data, but

since the median is estimated, it is safest when the differences are symmetrically

distributed around the median difference. Non-parametric tests have typically

lower statistical power, meaning they are more conservative.

Lastly, one can also consider the true positive rate (TPR), more precisely,520

how many test samples were classified correctly out of the total test set. To avoid

the complications of dealing with the true underlying multinomial distributions

(though that is also possible, but falls outside the scope of this paper), we

can simplify this case as a set of Bernoulli trials. Assuming a balanced test

set, the true probability of success is the real TPR, for which we obtained an525

estimate by applying the method to the test data. The number of true positives

we obtain by classifying the test set then follows a Binomial distribution, with

the proportion parameter p = TPR. This parameter can be estimated in a

Bayesian way, including a credible interval for it, using for example the Jeffreys

interval1 [3, 5]. These intervals are shown for the results in tbl. 1. If the credible530

intervals do not overlap, then for α = 5%:

P (p1 ≤ p2) < 1−P (p1 > Lower1)·P (p2 < Upper2) = 1−(1−α/2)·(1−α/2) < 5%

(13)

These methods were applied to evaluate the proposed DLR-VAE models

on multiple datasets, using their standard implementation in R’s core libraries.

The different mechanisms and assumptions mean that they are better suited to

detect certain types of differences than others. Fishers’s exact test can detect535

1for more details please see Márton and Türker [29], where the Jeffreys interval was used

to derive the number of test cases needed to obtain certain bounds on the accuracy
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Table 2: Statistical significance of the improvement by DLR-VAE over the VAE+DNN baseline

model, see tbl. 1 (note that for the Jeffreys interval distance we took a conservative approach

and reported the difference between the upper bound of VAE+DNN vs. the upper and lower

bound of DLR-VAE, respectively); significant p-values marked with bold

Test Improvement MNIST-fc SVHN-fc MNIST-conv SVHN-conv SEMEION /w MNIST-conv

Fisher’s p-value 0.95 9.54e-3 0.98 1e-5 1.75e-2

Wilcoxon lower 95% 1 -1 3.7e-5 -2.5 -4.5e-5

Rank upper 95% ∞ ∞ ∞ ∞ ∞

Sum p-value 2.1e-7 0.26 2.22e-3 0.38 0.1

Jeffreys lower 95% 0.14% -0.58% -0.09% -0.76% -1.79%

interval upper 95% 0.55% 0.21% 0.24% 0.03% 1.55%

p-value <5% ≥5% ≥5% ≥5% ≥5%

Significant at least once yes yes yes yes yes

very small differences given a large number of samples, while the Wilkoxon Rank

Sum test and the Jeffreys interval comparison are less powerful if the differences

are small. Additionally, due to the bathtub shape of the non-informative Jeffreys

prior for the binomial proportion p, the Jeffreys interval gets wider as the TPR

approaches 50%, the prior being geared towards high, or low, TPR values (due540

to the symmetry of the problem, it does not change anything if the error rate

is used instead of the TPR).

The results of the different tests are shown in tbl. 2. As discussed above, not

all tests detected a significant difference between the models, but in all cases at

least one did. Therefore, even after controlling for multiple hypothesis testing545

(depending on its scope and method used), we can assume that we are observing

a real effect, which can be more pronounced in more complicated tasks (since

the largest difference being observed is on the SEMEION dataset: 1.6%, even

though not statistically significant due to the smaller sample size).

6. Conclusion550

In this work we investigated the regularization effect of training a DNN

classifier in combination with a variational auto-encoder. The methods are

specially suitable for application when computational complexity is of concern.
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Moreover, employing the DLR-VAE in semi-supervised scenarios remains an

interesting topic. We also presented a general approach to test the statistical555

significance of classification results, and used it to evaluate our models.

In-depth analysis of the performance of the presented approach and the

influence of the regularization effect on the topology of the latent manifold in

regression scenarios gives motivation for further research. Additionally, the com-

bination of discriminative with adversarial regularization can provide a powerful560

tool for shaping the latent representation by a Bayes prior (due to optimizing

the lower bound), functional objectives (due to discriminative regularization)

and arbitrary distributions (due to adversarial training).

Another potential application that exploits the underlying generalization

power of the latent manifold is incremental learning: New samples (possibly565

even from a different application domain) are added to a pre-trained network,

reusing and refining the existing representation for the new task, thus reducing

the amount of training data that is required.

We believe that such approaches are highly useful for a wide range of appli-

cations where raw sensor data needs to be interpreted, with a limited amount of570

(partially) labeled data. Such an example application was already explored in

the case of classification and regression based on structure-borne sound in the

industrial manipulation domain [32], and could prove useful when dealing with

depth images as well.
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