Tayeb, Zied and Waniek, Nicolai and Fedjaev, Juri and Ghaboosi, Nejla and Rychly, Leonard and Widderich, Christian and Richter, Christoph and Braun, Jonas and Saveriano, Matteo and Cheng, Gordon and Conradt, Jorg (2018) Gumpy: a python toolbox suitable for hybrid brain-computer interfaces. Journal of Neural Engineering. Institute of Physics (IOP) Publishing. doi: 10.1088/1741-2552/aae186. ISSN 1741-2560.
![]() |
PDF
1MB |
Official URL: https://doi.org/10.1088/1741-2552/aae186
Abstract
Objective. The objective of this work is to present gumpy, a new free and open source Python toolbox designed for hybrid brain-computer interface (BCI). Approach. Gumpy provides state-of-the-art algorithms and includes a rich selection of signal processing methods that have been employed by the BCI community over the last 20 years. In addition, a wide range of classification methods that span from classical machine learning algorithms to deep neural network models are provided. Gumpy can be used for both EEG and EMG biosignal analysis, visualization, real-time streaming and decoding. Results. The usage of the toolbox was demonstrated through two different offline example studies, namely movement prediction from EEG motor imagery, and the decoding of natural grasp movements with the applied finger forces from surface EMG (sEMG) signals. Additionally, gumpy was used for real-time control of a robot arm using steady-state visually evoked potentials (SSVEP) as well as for real-time prosthetic hand control using sEMG. Overall, obtained results with the gumpy toolbox are comparable or better than previously reported results on the same datasets. Significance. Gumpy is a free and open source software, which allows end-users to perform online hybrid BCIs and provides different techniques for processing and decoding of EEG and EMG signals. More importantly, the achieved results reveal that gumpy’s deep learning toolbox can match or outperform the state-of-the-art in terms of accuracy. This can therefore enable BCI researchers to develop more robust decoding algorithms using novel techniques and hence chart a route ahead for new BCI improvements.
Item URL in elib: | https://elib.dlr.de/121742/ | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||||||||||||||||||
Title: | Gumpy: a python toolbox suitable for hybrid brain-computer interfaces | ||||||||||||||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||||||||||||||
Date: | 2018 | ||||||||||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Journal of Neural Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1088/1741-2552/aae186 | ||||||||||||||||||||||||||||||||||||||||||||||||
Publisher: | Institute of Physics (IOP) Publishing | ||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 1741-2560 | ||||||||||||||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||||||||||||||
Keywords: | Hybrid Brain-Computer Interfaces, Python toolbox, Deep Learning, EEG, EMG | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Terrestrial Assistance Robotics (old) | ||||||||||||||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||||||||||||||||||||||||||||||||||
Deposited By: | Saveriano, Matteo | ||||||||||||||||||||||||||||||||||||||||||||||||
Deposited On: | 29 Nov 2018 15:50 | ||||||||||||||||||||||||||||||||||||||||||||||||
Last Modified: | 13 Jun 2023 14:38 |
Repository Staff Only: item control page