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Abstract. Objective . The objective of this work is to present gumpy, a new free
and open source Python toolbox designed for hybrid brain-computer interface (BCI).
Approach . Gumpy provides state-of-the-art algorithms and includes a rich selection
of signal processing methods that have been employed by the BCI community over
the last 20 years. In addition, a wide range of classi�cation methods that span from
classical machine learning algorithms to deep neural network models are provided.
Gumpy can be used for both EEG and EMG biosignal analysis, visualization, real-
time streaming and decoding. Results . The usage of the toolbox was demonstrated
through two di�erent o�ine example studies, namely movement pred iction from EEG
motor imagery, and the decoding of natural grasp movements with the applied �nger
forces from surface EMG (sEMG) signals. Additionally, gumpy was used for real-time
control of a robot arm using steady-state visually evoked potentials (SSVEP) as well
as for real-time prosthetic hand control using sEMG. Overall, obtainedresults with the
gumpy toolbox are comparable or better than previously reported results on the same
datasets. Signi�cance . Gumpy is a free and open source software, which allows end-
users to perform online hybrid BCIs and provides di�erent techniques for processing
and decoding of EEG and EMG signals. More importantly, the achieved results reveal
that gumpy's deep learning toolbox can match or outperform the state-of-the-art in
terms of accuracy. This can therefore enable BCI researchers to develop more robust
decoding algorithms using novel techniques and hence chart a routeahead for new BCI
improvements.
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EMG.
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1. Introduction

Paralyzed people wish to control assistive devices such as wheelchairs, spellers,
prosthetics, or exoskeletons in order to improve their quality of life and
ensure their independence [1]. One way to infer their desired actions is to
measure their cortical activity, for instance by functional magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), electrocorticography (ECoG), or
electroencephalography (EEG) and subsequently decode theintended movement from
the measurements. Of these methods, EEG has become the most frequently used
technique for BCIs, because it is non-invasive and comparably inexpensive. Although
BCI technology has seen signi�cant improvements over the last few years [2, 3], it
still lacks reliability and accuracy. Hybrid BCIs in general[4], and particularly those
which combine EEG and EMG signals are promising signi�cant improvements [5].
Despite the successful multidimensional EEG-based BCI control achieved using simple
classi�ers [6, 3], reliable decoding of complex movements from brain signals is still
challenging and requires advanced algorithms [7]. Recent developed techniques such
as deep neural networks [8] could represent a promising solution to develop more robust
decoding algorithms [7]. In order to make such algorithms readily available to a wide
BCI community we developedgumpy, a Python library along with well documented
application examples that we introduce in this paper. Gumpyis an easy-to-use, robust,
and powerful software package for EEG and EMG signal analysis and decoding that
tightly incorporates di�erent recording paradigms, essential signal processing techniques,
and state-of-the-art machine learning algorithms. Gumpy can be used for o�ine as well
as for online processing of electrophysiological signals.Several similar BCI software
packages exist and are widely used by the community [9]. Gumpy is free of charge,
permissively licensed and written in Python, an open sourceprogramming language
that is not only backed by an extensive standard library, butalso by vast scienti�c
computing libraries. Moreover, it is widely used by many machine learning experts,
engineers and neuroscientists. Gumpy o�ers users the opportunity to reproduce results
previously achieved by other BCI researchers through implementing a wide range of
signal processing and classi�cation methods for time series signal analysis. Furthermore,
the toolbox features several deep learning models such as deep convolutional neural
networks (CNN) [10], recurrent convolutional neural networks (RCNN) and Long Short-
Term Memory (LSTM) [11]. Those approaches have hitherto been rarely investigated
by BCI researchers [12] and to the best of our knowledge no existing BCI software
integrates similar techniques. This paper introduces the basic concept ofgumpy, its
main features and three successful BCI applications. The remainder of this paper
is structured as follows: Section 2 provides an overview of related work and reviews
existing BCI toolboxes. Section 3 describesgumpy's design and its main features and
functions. Section 4 and 5 demonstrate, respectively, the basic o�ine and online usage
of gumpy on di�erent tasks, such as motor imagery (MI) movements decoding from
EEG, and the prediction of hand gestures from sEMG. Finally, Section 6 enumerates
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gumpy's strengths and weaknesses and proposes possible future developments.

2. Related work

This section provides an overview of the most widely-used open source BCI platforms for
research and highlights the distinctive features ofgumpy with respect to them. Table 1
summarizes their main functions and limitations. References [9, 13] provide a more
comprehensive survey. The discussion focuses on a particular feature set that we deem
essential for the successful development of future hybrid BCI systems.

2.1. BCILAB

BCILAB [14] is among the earliest publicly available BCI software packages for research
purposes. It is a free, open source toolbox developed in Matlab. BCILAB is built
to emulate the plugin concept where various components can be added "on the 
y"
during the runtime. BCILAB was designed as an extension of EEGLAB [15] to
support both o�ine and online analysis of electrophysiological signals. Besides various
feature extraction methods and experimental paradigms supported by the toolbox, an
end-user can choose between three di�erent classi�ers (Linear Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM)).
In addition, BCILAB obliges users to design their scripts in Matlab [14].

2.2. BCI2000

BCI2000 [16] is an open source and free of charge BCI softwarepackage developed in 2000
to advance real-time BCI systems. It includes di�erent modules such as data acquisition,
signal processing and stimulus presentation. The toolbox is written in C++ and does
not directly support other programming languages such as Matlab or Python, so in this
regard it is di�cult to extend and integrate with other toolb oxes. Furthermore, some
important processing methods such as discrete wavelet transform and some classi�cation
techniques such as deep learning are not included [16].

2.3. MNE

MNE is an open source Python package for MEG/EEG data analysis. MNE implements
a wide range of functions for time-frequency analysis and connectivity estimation as well
as simple decoding algorithms [17]. Similar togumpy, it is built on top of widely used
scienti�c computing libraries such as NumPy [18], SciPy [19],pandas and scikit-learn
[20]. Moreover, MNE o�ers functions for neuroimaging data interpretation such as fMRI
analysis. Despite recent developments, the toolbox still lacks some important functions
and methods, such as common spatial pattern algorithm (CSP)[21] and various popular
machine learning classi�ers.
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2.4. Wyrm

Wyrm [22] is an open source BCI package written in Python. The toolbox implements
several functions for processing and visualization of electrophysiological data such as
EEG and ECoG signals. Moreover, Wyrm is suitable for both o�ine processing and
real-time applications. Furthermore, the toolbox integrates Mushu [23] a free software
for signals acquisition, and Py� [24], which is a framework for BCI feedback applications.

2.5. OpenViBE

OpenViBE [25], another open source BCI platform, is designedin a modular fashion and
incorporates an elegant graphical user interface for novice users. Moreover, it provides
a wide range of signal processing techniques and supports many acquisition and BCI
paradigms such as P300 [26, 27] and SSVEP [28]. One of OpenViBE's advantages with
respect to the previously mentioned toolboxes is that it canbe scripted using both LUA
and Python. In addition, it o�ers a direct interface to Matlab. OpenViBE currently
provides three classi�ers: LDA, SVM as well as a combined classi�er for a multi-class
problem classi�cation.

Table 1: General Overview of Existing BCI toolboxes.

Software platform Programming language Features

BCILAB Matlab
Wide range of algorithms

Well-designed GUI

BCI2000 C++
Simple and Robust

Wide usage by BCI community
Modular programming

MNE Python
EEG, MEG and fMRI data analysis

Good documentation

Wyrm Python
EEG and ECoG signals
Real-time capabilities

Integration with other platforms

OpenViBE LUA, Python
Modular API

Supports many acquisition devices

Gumpy Python

Hybrid BCI
Real-time capabilities

O�ine and online analyses
Deep learning toolbox

2.6. Distinctive features of gumpy

Despite the tremendous number of features that current BCI toolboxes o�er, they still
exhibit some limitations [13] such as a lack of important processing and classi�cation
methods, limited real-time performance, or lack of experimental paradigms to conduct
online BCI experiments. More importantly, none of the existing packages combine classic
machine learning algorithms and deep learning techniques for signals decoding. However,



Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 5

gumpy covers a wide range of classi�cation methods including several machine learning
classi�ers, voting classi�ers, feature selection algorithms and di�erent deep learning
architectures such as LSTM, CNN and RCNN. Additionally, we provide many showcase
examples of the usage ofgumpyfor EEG and EMG signals decoding, thereby facilitating
the design of hybrid BCI systems. Furthermore,gumpyintegrates di�erent experimental
paradigms for motor imagery, EMG, SSVEP, EEG reach-to-graspmovements recording
and hybrid BCI, which can be easily used and extended by end-users. Importantly,
gumpy supports o�ine analysis as well as online BCI applications. With the lab
streaming layer (LSL) [29] for data acquisition, the provided experimental paradigms
for biosignals recording andgumpy package for EEG and EMG data processing and
decoding, we envisiongumpy to be a suitable toolkit for conducting online hybrid BCI
experiments.

3. Gumpy toolbox: design, main functions and features

3.1. General overview of gumpy's modules

Gumpy comprises six modules for plotting, processing, and classi�cation of EEG
and EMG signals. Moreover,gumpy incorporates di�erent deep learning models and
experimental recording paradigms. This section provides acondensed overview of
gumpy's modules and its main functionality, which are summarizedin Figure 1. Some
of the modules are described in more detail in the following section on exemplary use-
cases. Particularly, subsection 3.3 covers the available deep learning classi�ers. Where
possible,gumpy leverages existing and well established scienti�c and numerical libraries
such as NumPy [18], SciPy [19] and scikit-learn [20] to compute the classi�cation results
or to perform signal analysis. For instance,gumpy's SVM classi�er utilizes scikit-
learn. However,gumpy precon�gures its classi�ers with default parameters that were
found to be suitable in typical BCI applications. In addition, gumpy can perform a
grid search to tune their settings. One ofgumpy's core design principles is to allow
users to easily extend its functionality, thereby facilitating usability, customizability
and collaborative development. The latter is further enabled using our public git
repository at https://github.com/gumpy-bci through which we solicit the community
to contribute feedback and code. In addition, the websitehttp://gumpy.org/ provides
an API reference and usage examples in the form of Jupyter notebooks.

3.2. Gumpy's experimental paradigms

3.2.1. Classic motor imagery movementsGumpy provides a cue-based screening
paradigm to record classic motor imagery; namely the imagination of the movement
of left hand, right hand or both hands as shown in Figure 2. At prede�ned times, the
screen displays a cue in the form of an arrow pointing either left, right or both ways.
The participant has to perform a hand movement imagination accordingly.

https://github.com/gumpy-bci
http://gumpy.org/
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Figure 1: Overview ofgumpy toolbox modules and functions.

Figure 2: Illustration of recording paradigm for three motor imagery EEG data
acquisition. (a) Photograph of a recording session. (b) Outline of the designed recording
paradigm.

3.2.2. Reach-to-grasp motor imagery movementsGumpy incorporates a paradigm to
record EEG reach-to-grasp movements imagination of six di�erent objects placed on
a shelf with �xed positions as shown in Figure 3. The subject isasked to imagine
a reach movement by bringing the cursor (square) toward one of the six center-out
target locations (up-left, up-right, center-left, center-right, down-left, down-right). Once
the square hits the target, it turns red which triggers the participant to now imagine
performing a grasping movement on that speci�c target.
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Figure 3: Illustration of recording paradigm for reach-to-grasp movements. (a) Display
requests subject to imaginatively reach for the mid-left cup in the shelf. (b) Subject is
requested to imagine grasping the center-right cup.

3.2.3. Grasp poses and related �nger forces from surface EMG signalsA special
experimental paradigm was designed to record sEMG signals from the forearm during
four di�erent hand movements (2-digit grasp, 3-digit grasp, �st, hand open) as shown
in Figure 4 with two possible force levels (high, low). Straingauge sensors placed on
the �ngertips measured the applied grasping force [30] .

Figure 4: EMG recording paradigm. (a) Di�erent hand gesture renderings prompting
subjects. (b) Recording setup of EMG signals during grasp movements.

3.2.4. Gumpy-SSVEP paradigmThe SSVEP paradigm consists of four 
ickering
checkerboards blinking at di�erent frequencies (13, 15, 17and 19 Hz), as shown in
Figure 5. The subject has to focus on one of the 
ickering checkerboards in order to
evoke an SSVEP response. Simultaneously, EEG signals recording from O1, OZ and
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O2 electrodes were performed. The paradigm was implementedusing PyGame [31],
a gaming-oriented Python library for graphical user interfaces. It requires a monitor
supporting su�ciently high (or dynamic) refresh rates.

Figure 5: Illustration of the recording paradigm for SSVEP.

3.2.5. Gumpy's experimental paradigm for real-time hybrid BCIThe hybrid BCI
paradigm allows end users to perform online hybrid BCI experiments. For instance,
this paradigm was used to perform a sequential hybrid BCI task, where the subject
was asked to imagine left or right hand movement imaginationand execute thereafter
the same imagined movement. For that, a simultaneous recording of EEG and sEMG
signals was performed using two synchronized g.USBamp devices. Signals were sampled
at 512 Hz and the LSL was used for data acquisition in a master-slave communication
fashion. It should be noted that the developed paradigm could be used to simultaneously
collect data from other devices (e.g. Myo armband [32] and the g.USBamp) and could
be easily modi�ed to acquire other types of biosignals. A detailed documentation of
the hybrid paradigm as well as the developed code are made publicly available within
gumpy under https://github.com/gumpy-bci .

3.3. Gumpy's deep learning module

Despite the numerous successful applications of deep neural networks [10], the
development of deep learning methods in the BCI �eld is stillquite rare [12]. In this
section, we describegumpy's deep learning module, which is based on Theano [33] and
Keras [34], as well as di�erent implemented and available network architectures.

https://github.com/gumpy-bci
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3.3.1. Recurrent neural networks (RNN) Recurrent neural networks and particularly
long short-term memory (LSTM) have been used successfully to model the temporal
characteristics of diverse non-stationary and non-lineartime-series signals. Likewise,
such methods should be applicable to EEG data as well [35]. Gumpy makes LSTMs
and other recurrent architectures like vanilla RNN and recurrent convolutional neural
networks (RCNN) readily available and provides well-documented example code. The
architecture of the LSTM algorithm distributed with the ini tial gumpy release is shown
in Figure 6. It consists of one LSTM layer consisting of 128 cells and an input layer
whereE represents the electrode channels,T represents the number of samples in every
channel andK the number of output classes.

Figure 6: Implemented LSTM architecture.

3.3.2. Convolutional Neural Network (CNN) The proposed CNN model architecture
is illustrated in Figure 7. The network architecture is inspired by CNNs used in
the ImageNet competition, such as VGGNet [36] and AlexNet [37]. It uses stacked
convolutional layers with decreasing size and increasing number of �lter kernels in deeper
layers. After each convolutional layer, batch normalization is applied to reduce covariate
shift in intermediate representations and improve robustness. The actual spectrogram
representation of the EEG signal is computed in the �rst layer and used as an input to
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the model. A more detailed description of the CNN architecture and its implementation
will be provided elsewhere [38].

Figure 7: The proposed CNN architecture, whereE is the number of electrodes,T is
the number of timesteps andK is the number of classes.

4. O�ine analysis case studies

In this section, we show how to usegumpyto perform o�ine analysis of EEG/EMG data.
As a result, researchers can easily reproduce the obtained results using our provided
Jupyter notebooks, our freely available EEG/EMG recorded data or the EEG dataset
2b from BCI competition IV [39] as well asgumpy's available experimental paradigms.

4.1. Decoding of two motor imagery movements from Graz 2b EEG signals

We usedgumpy's signal and classi�cation developed modules to process and classify an
existing EEG dataset known as 2b EEG dataset from "BCI Competition IV" [40]. The
source code (Jupyter notebooks) utilized in these o�ine examples are freely available
under http://gumpy.org/ .

4.1.1. Standard Machine learning techniquesThree feature extraction methods, i.e.
logarithmic band power (BP) [41], common spatial patterns (CSP) [42, 43] and discrete
wavelet transform [44], have been investigated and tested.In general, CSP features
maximize the pairwise compound variance between two or moreclasses in the least
square sense, whereas wavelet features provide an e�ectivetime-frequency representation

http://gumpy.org/
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of non-stationary signals [44]. We wish to emphasize that those feature extraction
methods have been advocated by BCI researchers in [7]. After extracting discriminative
features, gumpy.features.sequential feature selector was used to automatically
select a subset of features in the feature space using the sequential feature selection
algorithm (SFSF) [45]. Thegumpy.split module provides several methods for splitting
data. Herein, we used the hold-out strategy by splitting the dataset into 80% for
training and 20% for test using thegumpy.split module. A 10-fold cross validation
was performed on the training set to select the best featuresusing six di�erent classi�ers
from the gumpy.classification module. Afterwards, the new generated subsets based
on the selected features were fed into each classi�er and newpredictions were made on
the testing dataset. Furthermore, we wish to mention that the classi�cation module
incorporates a voting classi�er, which employs an ensembleof classi�ers to "vote" using
their respective results. Finally, it should be noted thatgumpy.classification can
also perform a grid search to select the best hyper parameters for SVM and random
forest classi�ers for a given k-fold cross validation. Noticeably, BP slightly outperforms
the other two feature extraction methods and provides overall better results across
the di�erent nine subjects. The obtained classi�cation results with the BP feature
extraction method with six di�erent algorithms including t he voting classi�er are shown
below in Figure 8. Overall, the obtained results from individual subjects show inter-
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Figure 8: Accuracy results obtained for individual participants using the BP features
and six di�erent machine learning classi�ers, namely quadratic LDA (QLDA), logistic
regression (LR), naive bayes (NB), k-nearest neighbors (KNN),random forest (RF) and
the voting classi�er (VotingC).

and intra-subject variability. According to their performance, the nine participants
could be classi�ed into three categories: Bad participantsare S1, S2, S3 and S7 with
a classi�cation accuracy between 60 to 70%, good participants are S5, S6, S8 and S9
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with a classi�cation accuracy between 70 to 82%, and an excellent participant S4 with
an average classi�cation accuracy of 93.75%. It is worth noting that a comparable
performance was obtained with the CSP features. A Jupyter notebook showing how to
use the three di�erent feature extraction methods with the di�erent available classi�ers,
is made publicly available underhttps://github.com/gumpy-bci .

4.1.2. Deep learning techniquesTwo deep neural network algorithms for motor
imagery classi�cation using thegumpy.deeplearning module were investigated and
tested: convolutional and recurrent neural networks. Firstly, an LSTM model with
only one hidden layer consisting of 128 LSTM memory cells wastested. To assess
the model's capability of autonomously learning discriminative features, only raw EEG
signals were fed into the algorithm. The large number of parameters of the LSTM model
makes the model prone to over�tting. A dropout layer with a deactivation rate of 0.05
between the output and the LSTM layer partially mitigates this problem. Second, a
CNN algorithm was implemented and tested. Recorded EEG signals were �rst cropped
into short, overlapping time-windows. Thereafter, a fast Fourier transform (FFT) was
performed on each crop, assuming stationarity in short time-frames. Spectrograms from
three electrodes C3, C4 and Cz in the frequency band of 25-40 Hzwere computed and
used as inputs to our proposed CNN algorithm. Parameters wereset to n = 1024 FFT
samples and a time shift of s = 16 time steps between STFT windows. For each of the
nine participants, a strati�ed 5-fold cross-validation was applied. Four folds were used
for training and validation (90 % training, 10 % validation) and the last fold was used
for testing. Finally, we point out that early stopping [46] was used to avoid over�tting.
That means the model is trained until the minimum of the validation loss is found and
then tested on the test data to measure its generalization capabilities. Interestingly, the
obtained results with the CNN model outperformed the state ofthe art results on the
same dataset, which were obtained with classic methods. However, LSTM results were
similar to those obtained with traditional methods (e.g. quadratic LDA) as shown in
Figure 9. An intuitive reason of that could be the limited amount of training data. As
a result, reducing model complexity by decreasing the number of cell memories would
be a promising solution to improve the developed algorithm.After validating the o�ine
results, we wish to mention that the testing phase was done online and a successful
real-time control of a robot arm was performed using the trained proposed CNN model
as shown in the supplementary video in the supplementary materials section 7.

4.2. Decoding of natural grasps from surface EMG signals

Making a prosthetic hand grasp an object precisely and e�ortlessly is a crucial step
in prostheses design [47]. Additionally, dexterous grasping of objects with di�erent
shapes and sizes seems to be a big challenge in today's prostheses. In this section, we
demonstrate the usage ofgumpy to classify four movements (Fist grasp, 2-digit grasp,
3-digit grasp, hand open) with two di�erent force levels (low, high). Data used in this

https://github.com/gumpy-bci
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Figure 9: Accuracy results obtained for individual participants with QLDA, CNN and
LSTM models.

example study were recorded at our lab and are made publicly available at gumpy's
website. Di�erent steps for EMG processing usinggumpy are described below.

Filtering EMG signals were band-pass �ltered between 20 and 255 Hz and notch �ltered
at 50 Hz using the gumpy.signal module. Feature extraction and normalization:
Filtered EMG signals were analyzed using 200 ms sliding time windows with 50 ms
overlapping [48]. The length of the sliding window was chosen for the purpose of allowing
real-time control. For each interval, the computed mean of the signal was subtracted and
divided by the standard deviation. Besides, the resulting EMG signals were normalized
by the maximum voluntary isometric contraction (MVIC) magnitude. Thereafter, the
root mean square (RMS) was computed in each time window and fed into the classi�er.
We wish to stress that we used the same feature extraction method to classify each type
of the associated force level (low, high).

Feature selection and Classi�cation Herein, the SFFS algorithm was used to select a
certain number of features in thek range (10, 25). Di�erent classi�ers were used to
predict one of four possible hand poses and one of the two force levels. O�ine results
using SVM with 3-fold strati�ed cross validation are illustrated in Figure 10. Obtained
prediction results during the real-time test, are presented in the next section. The
validation accuracy for three di�erent subjects were 82% (� 4%) for posture classi�cation
and 96% (� 3%) for force classi�cation. It should be noted that those results were
obtained after performing three-fold cross validation using gumpy's validation module.
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Figure 10: Obtained results for hand posture and force classi�cation with 3-fold cross-
validation.

5. Gumpy real-time applications

Aside of the o�ine capabilities, gumpy can be used in an online fashion to perform
real-time experiments such as robot arm control using SSVEP,online EMG decoding
and real-time control of robots using EEG signals. All the real-time gumpycase studies
as well as the developed real-time experimental paradigms are made available under
https://github.com/gumpy-bci/gumpy-realtime . Importantly, these case studies
can be easily modi�ed or extended bygumpyend-users to suit their speci�c applications.

5.1. Real-time Robot Arm Control using SSVEP-based BCI

In this section, we further test and validategumpy's real-time capabilities by online
detection and classi�cation of SSVEP signals for a robot arm control. SSVEP are brain
events measured after a visual 
ickering stimulation of a frequency between 3.5 Hz and 75
Hz. They appear as a peak in the frequency spectrum of the EEG signals recorded over
the primary visual cortex at the respective stimulus frequency [28]. ThegumpySSVEP
paradigm described previously in section 3.2.4 was used fordata recording. During the
live experiment, the subject had to focus on one of the four displayed checkerboards

ickering at di�erent frequencies. Power spectral density(PSD) features from the
electrodes O1, O2, and Oz over the occipital lobe were extracted, normalized and a
principal component analysis (PCA) was performed to reduce the dimensionality. A
random forest classi�er was trained o�ine on recorded data collected from four di�erent
subjects (3 male, 1 female). A 5-fold strati�ed cross validation was performed to evaluate
model performance and to tune hyper-parameters. Afterwards, the trained random

https://github.com/gumpy-bci/gumpy-realtime
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forest classi�er was used in the testing phase to perform an online classi�cation, where
new predictions on the test data were performed. Thereafter, a command was sent to
move a six degrees of freedom (6-DoF) robot arm in four di�erent directions according
to the position of the detected 
ickering object. A 
owchart of this SSVEP project
is shown in Figure 11. In addition, a supplementary video of this work, which shows
a successful real-time robot arm control using SSVEP-based BCI is available in the
supplementary materials section 7.

Figure 11: SSVEP project 
owchart.

5.2. Real-time prosthetic hand using surface EMG signals

Herein, we describe the online decoding of three grasp poses,namely �st grasp, 2-digit
grasp and 3-digit grasp. The o�ine analysis and processing described previously in
section 4.2 were used. The developed algorithm was tested ontwo healthy subjects. 72
trials (24 for each posture) were �rst acquired to train the model. Thereafter, new 30
online trials (10 per posture) were used for online testing.The number of o�ine trials
used for model training has been reduced in retrospective analysis to evaluate the e�ect
of the training data size on the online classi�cation accuracy as shown in Figure 12. It
should be noted that a 3-fold cross validation was used to train the (o�ine) model in the
�rst place. Figure 12 shows that with 72 o�ine trials, an accuracy of 82% and 92% was
reached for S1 and S2, respectively. Overall, it is clear that the accuracy could be even
further improved by increasing the number of training trials. However, by using 24 trials
for each posture, a good compromise between duration of training time and accuracy of
training was found. A supplementary video of this work, which shows a successful real-
time prosthetic hand control using sEMG is available in the supplementary materials
section 7.
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Figure 12: Online Accuracy of EMG classi�cation without force.

5.3. Online hybrid BCI using EEG and surface EMG for reach-to-grasp movements

In this section, we present a case study for the hybrid BCI approach, where the
decoding of motor imagery (MI) movements from EEG (Section 4.1) was combined
with posture classi�cation from sEMG (Section 5.2) in a sequential fashion. For that,
2-MI movements, namely left and right imagined hand movements and three classes of
hand postures (�st, 2-�nger pinch and 3-�nger pinch) were decoded. Classic machine
learning and deep learning approaches were combined to perform an online decoding. In
this example study, the online mode was designed to perform reach-to-grasp movement
decoding, where a KUKA robot arm [49] was controlled by MI signals (reach movement)
whereas a prosthetic hand was controlled using sEMG signals(grasp movement) in a
single online experiment. One bene�t o�ered by combining EEG and EMG [50] is the low
latency provided by EEG when decoding reach movements as well as the rich spectro-
temporal information that can be decoded from sEMG when classifying complex grasp
movements [50, 48]. In this example study, the LSL was used tosynchronize di�erent
data streams (EEG, EMG) and the temporal procedure was arranged as a state machine.
During the o�ine recording, the program alternates betweentwo states, which execute
the tasks related to EEG and EMG experiments. This means the participant performed
the EEG experimental paradigm �rst. Thereafter, the EMG experimental paradigm
was performed. This procedure was repeated for a de�ned number of o�ine trials,
for instance 72 as was shown in the online EMG experiment in section 5.2. After
completion of the o�ine experiments, the program enters a state, where the model of
posture detection was trained based on the o�ine recorded EMG data whereas the MI
pre-trained model was retrained based on the o�ine EEG data.It should be noted that
the pre-trained model can be either a CNN or a standard machinelearning classi�er,
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depending on the end-user's con�guration. Afterwards, the program enters the online
phase, which consists of three states (EEG, EMG and classi�cation). These states are
performed sequentially for a de�ned number of online trials. Likewise, the EEG state
was �rst performed and was followed by the EMG state. As a result, data were classi�ed
and the robot arm as well as the prosthetic hand were controlled to perform a reach-to
grasp movement as shown in Figure 13. It is worth noting that di�erent experiments
investigating the aforementioned hybrid approach are currently conducted and results
will be reported in another scienti�c paper.
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Figure 13: The proposed hybrid BCI experiment for reach-to-grasp movements decoding.

5.4. Live generation of spectrograms

In this section, we show how to usegumpy to generate and stream spectrograms, which
could be used later on for di�erent online applications. Generally, spectrograms are
generated from data within a circular bu�er that stores a predetermined number of
samples up to the most recent one. The capacity of this bu�er depends on the parameters
used for the short-time Fourier transform (STFT), namely thewindow length and the
overlap between consecutive windows. The window length is chosen as a compromise
between frequency resolution in lower frequency bands and time resolution in higher
ones. Prior to the STFT's application, the data are passed through the �lter bank to
ensure consistency in the signal range over all spectrograms. The training of a suitable
network is realized with data augmentation methods, which mimic the live processing,
so that the network is presented with similar data throughout training and real-time
application. The live generation system has been tested forframe rates up to 128 Hz on
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a PC with a 2.8 GHz quadcore CPU, showing a stable performance throughout. The
source code of this live interface is available in the gumpy-realtime repository. Figure
14 and 15 summarize the whole process of live spectrograms generation. As shown in
the video, a noticeable delay (� 1.4 sec) was experienced when performing the real-
time experiment. This delay can be attributed almost entirely to the CNN processing.
Hence, modern hardware accelerators like NVIDIA TensorRT [51], Intel Movidius NCS
[52] or even IBM TrueNorth [53] could reduce the latency drastically and provide much
higher throughput for our developed deep learning models than the standard PC we
have employed.

Figure 14: Data streaming via LSL.

6. Discussion and Conclusion

6.1. Gumpy toolbox advantages

In this paper, we unveiledgumpy, a free and open source Python toolbox for BCI
applications. Gumpy includes a wide range of visualization, processing and decoding
methods including feature selection algorithms, classic machine learning classi�ers,
voting classi�ers and several deep learning architectures. Additionally, the toolbox
is not only limited to EEG signals, but it can be used to interpret sEMG signals as
well, hence spurring the usage of hybrid BCI concepts. Furthermore,gumpy provides a
turnkey solution to perform online BCI experiments by providing several experimental
paradigm examples including SSVEP, classic motor imagery movements, reach-to-grasp
movements, EMG grasping tasks and online hybrid BCI experiments. In the previous
sections, we demonstrated the usage ofgumpy with two showcase examples for o�ine
analysis using an existing EEG dataset and new EMG data recorded at our lab.
Similarly, gumpy's real-time capabilities were shown through the control ofa robot arm
using SSVEP-based BCI and the real-time control of a prosthetic hand using sEMG.
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Figure 15: A frame of a live stream. Top: Filtered signal duringa trial. Blue and
red traces illustrate channel 1 and channel 2, respectively. Vertical lines indicate visual
(orange, arrow at t = 0 s) and acoustic cues (red). Bottom: Generated spectrograms
from data within the grey rectangle shown above.

More relevantly, gumpy includes di�erent deep learning models such as CNN, RCNN
and LSTM which were developed and tested in this paper to classify sensory motor
rhythms from EEG signals. Interestingly, not only a reproducibility of previous results
was achieved with gumpy but also some of the results (e.g. section 4.1) outperformed
state-of-the art results on the same datasets. Thus, gumpy could foster the development
of more robust EEG/EMG decoding algorithms and open new avenues in ongoing hybrid
BCI research. Finally, it is important to highlight that di�e rent BCI research groups
are now testing the toolbox and many students have already worked with it. Most of
the students managed to master the use of the toolbox in less than a week.

6.2. Future development of gumpy toolbox

Despite the considerable number of functions, algorithms and experimental paradigms
that gumpy provides, further processing methods are under development. Particularly,
developing an experimental paradigm for error-related potential (ErrP) recording as well
as providing a case study for ErrPs decoding would be of utmost importance for BCI
researchers [54, 55]. Likewise, a P300-based BCI speller paradigm is still missing and
should be added togumpy's experimental paradigms. Moreover, some of the widely-used
techniques in BCI research, such as source localization [56] and connectivity analysis
[57] should be integrated within thegumpy toolbox in future developments. Aside
from that, it would be important to include channel selection techniques [58] as well
as other classi�cation methods to the toolbox, such as Riemannian geometry-based
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classi�cation [59] and restricted Boltzmann machines [60], which have been advocated
by BCI researchers [7]. Moreover, in addition to the proposed sequential architecture in
section 5.3, it would be important to test the simultaneous hybrid BCI, where EEG and
EMG are fused to yield one control signal. This can be done by merging classi�cation
probabilities of EEG and EMG using Bayesian fusion techniques [5]. Furthermore, as
gumpy was solely tested with EEG and EMG signals, performing more analyses with
other human data, such as fMRI, ECoG or MEG could further validate the usefulness
as well as the applicability of the toolbox, thereby spur theuse ofgumpy in other BCI
applications. Last, we wish to highlight that some other example studies investigating
the fusion of di�erent multimodal signals [58] are now underdevelopment. Interesting
works proposed before by Y. Liet al. about combining P300 and motor imagery [61]
as well as combining SSVEP and P300 [62] present good sources of inspiration for
developing and testing new multimodal BCI case studies. Along these lines, it would be
undoubtedly important to investigate the combination of ErrP and EMG as has been
recently proposed by J. DelPretoet al. in their novel work [63].

6.3. Conclusion

This paper presents and thoroughly describesgumpy, a novel toolbox suitable for hybrid
brain computer interfaces. The overarching aim ofgumpy is to provide a libre BCI
software, which includes a wide range of functions for processing and decoding of EEG
and EMG signals as well as classi�cation methods with both traditional machine learning
and deep learning techniques. The o�ine usage of gumpy is demonstrated with two
di�erent showcase examples. Firstly, gumpy is used to decodetwo motor imagery
movements using a publicly available EEG 2b dataset from theBCI competition IV.
Di�erent feature extraction and classi�cation methods have also been implemented and
tested. Importantly, the obtained results using thegumpy CNN algorithm showed
some improvement compared to obtained state-of-the art results on the same dataset.
Furthermore, gumpy is also used to decode di�erent grasp poses from our recorded
gumpysignals. Additionally, we show gumpy's real-time capabilities within a successful
robot arm control using SSVEP signals and a prosthetic hand control using sEMG.
Last, we provide a case study where gumpy can be used to perform online hybrid
BCI experiments. Overall, there are promising future trends for its use in various BCI
applications. With gumpy, we envision to pave the way for a newphase of open source
BCI research.

7. Supplementary Materials

� Supplementary video 1 about real-time robot arm control using SSVEP-based
BCI: http://youtu.be/Dm-GGcImKjY

� Supplementary video 2 about EEG signals decoding using CNNs:http:
//youtu.be/8hM7tOd7M7A
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� Supplementary video 3 about prosthetic hand control using surface EMG
signals: http://youtu.be/igOEXpwfBZA

8. Source code and documentation

The source code of gumpy toolbox is released under the MIT license and available with
a detailed documentation athttp://gumpy.org . In addition, we provide a tutorial-like
overview of the toolbox using the python documentation generator Sphinx. With our
provided Jupyter notebooks, we facilitate the usage of the toolbox and we give end-users
insightful information how to adjust parameters in the toolbox.
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