Gumpy: A Python Toolbox Suitable for Hybrid
Brain-Computer Interfaces

Zied Tayeb %2, Nicolai Waniek 1!, Juri Fedjaev 1!, Nejla
Ghaboosi 3, Leonard Rychly 1, Christian Widderich 1,
Christoph Richter 1, Jonas Braun !, Matteo Saveriano *,
Gordon Cheng 2 and Jrg Conradt *

1 Neuroscienti ¢ System Theory, Department of Electrical and Computer
Engineering, Technical University of Munich, Germany

2 Institute for Cognitive Systems, Technical University of Munich, Germany
3 Integrated Research, Sydney, Australia

4 Institute of Robotics and Mechatronics, German Aerospace Center (DLR),
Germany

E-mail: zied.tayeb@tum.de

Abstract. Objective . The objective of this work is to present gumpy, a new free
and open source Python toolbox designed for hybrid brain-computer inérface (BCI).
Approach . Gumpy provides state-of-the-art algorithms and includes a rich séection
of signal processing methods that have been employed by the BCI camunity over
the last 20 years. In addition, a wide range of classi cation methods that pan from
classical machine learning algorithms to deep neural network models arprovided.
Gumpy can be used for both EEG and EMG biosignal analysis, visualization, eal-
time streaming and decoding. Results . The usage of the toolbox was demonstrated
through two di erent o ine example studies, namely movement pred iction from EEG
motor imagery, and the decoding of natural grasp movements with the appkd nger
forces from surface EMG (SEMG) signals. Additionally, gumpy was used for real-time
control of a robot arm using steady-state visually evoked potentials (SSVIP) as well
as for real-time prosthetic hand control using SsEMG. Overall, obtainedresults with the
gumpy toolbox are comparable or better than previously reported results on tle same
datasets. Signi cance . Gumpy is a free and open source software, which allows end-
users to perform online hybrid BCls and provides di erent techniques for processing
and decoding of EEG and EMG signals. More importantly, the achieved reglts reveal
that gumpys deep learning toolbox can match or outperform the state-of-the-art h
terms of accuracy. This can therefore enable BCI researchers to dde@ more robust
decoding algorithms using novel techniques and hence chart a routghead for new BCI
improvements.

Keywords Hybrid Brain-Computer Interfaces, Python toolbox, Deep Larning, EEG,
EMG.

Submitted to: J. Neural Eng.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 2

1. Introduction

Paralyzed people wish to control assistive devices such as eslthairs, spellers,
prosthetics, or exoskeletons in order to improve their qual of life and
ensure their independencel][1]. One way to infer their dedreactions is to
measure their cortical activity, for instance by functionh magnetic resonance
imaging (fMRI), magnetoencephalography (MEG), electroaticography (ECoG), or
electroencephalography (EEG) and subsequently decode timended movement from
the measurements. Of these methods, EEG has become the mastfiently used
technique for BCIs, because it is non-invasive and compaitghnexpensive. Although
BCI technology has seen signi cant improvements over the d&a few years [[2,B], it
still lacks reliability and accuracy. Hybrid BCIs in general[4], and particularly those
which combine EEG and EMG signals are promising signi cantmprovements [[5].
Despite the successful multidimensional EEG-based BCI dool achieved using simple
classiers [6,[3], reliable decoding of complex movementsorih brain signals is still
challenging and requires advanced algorithms! [7]. Recengwloped techniques such
as deep neural networks [8] could represent a promising d@u to develop more robust
decoding algorithms([7]. In order to make such algorithms adily available to a wide
BCI community we developedgumpy, a Python library along with well documented
application examples that we introduce in this paper. Gumpys an easy-to-use, robust,
and powerful software package for EEG and EMG signal analgsand decoding that
tightly incorporates di erent recording paradigms, essdral signal processing techniques,
and state-of-the-art machine learning algorithms. Gumpyamn be used for o ine as well
as for online processing of electrophysiological signal§everal similar BCI software
packages exist and are widely used by the community| [9]. Gusnps free of charge,
permissively licensed and written in Python, an open sourggrogramming language
that is not only backed by an extensive standard library, butalso by vast scienti c
computing libraries. Moreover, it is widely used by many mdune learning experts,
engineers and neuroscientists. Gumpy o ers users the opparity to reproduce results
previously achieved by other BCI researchers through impreenting a wide range of
signal processing and classi cation methods for time sesisignal analysis. Furthermore,
the toolbox features several deep learning models such agmleonvolutional neural
networks (CNN) [10], recurrent convolutional neural network (RCNN) and Long Short-
Term Memory (LSTM) [11]. Those approaches have hitherto baearely investigated
by BCI researchers[[12] and to the best of our knowledge no stig BCI software
integrates similar techniques. This paper introduces thedsic concept ofgumpy its
main features and three successful BCl applications. Themainder of this paper
is structured as follows: Sectiofi|2 provides an overview oflated work and reviews
existing BCI toolboxes. Section |3 describegumpys design and its main features and
functions. Sectiorl 4 and 5 demonstrate, respectively, thesic o ine and online usage
of gumpy on di erent tasks, such as motor imagery (MI) movements decling from
EEG, and the prediction of hand gestures from sEMG. Finally, &tion[§ enumerates

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 3

gumpys strengths and weaknesses and proposes possible futureettgoments.

2. Related work

This section provides an overview of the most widely-used ep source BCI platforms for
research and highlights the distinctive features gfumpy with respect to them. Table[1

summarizes their main functions and limitations. Referems [9,[13] provide a more
comprehensive survey. The discussion focuses on a paracudkature set that we deem
essential for the successful development of future hybriddB systems.

2.1. BCILAB

BCILAB [14] is among the earliest publicly available BCI sofare packages for research
purposes. It is a free, open source toolbox developed in Mdil BCILAB is built
to emulate the plugin concept where various components care ladded "on the y"
during the runtime. BCILAB was designed as an extension of EH®B [15] to
support both o ine and online analysis of electrophysiologal signals. Besides various
feature extraction methods and experimental paradigms spprted by the toolbox, an
end-user can choose between three dierent classi ers (lgar Discriminant Analysis
(LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machine (SVM)).
In addition, BCILAB obliges users to design their scripts in MNtlab [14].

2.2. BCI2000

BCI12000 [16] is an open source and free of charge BCI softwpaekage developed in 2000
to advance real-time BCI systems. Itincludes di erent modies such as data acquisition,
signal processing and stimulus presentation. The toolbog written in C++ and does
not directly support other programming languages such as Mab or Python, so in this
regard it is di cult to extend and integrate with other toolb oxes. Furthermore, some
important processing methods such as discrete wavelet tisform and some classi cation
techniques such as deep learning are not included][16].

2.3. MNE

MNE is an open source Python package for MEG/EEG data analysi$NE implements

a wide range of functions for time-frequency analysis androtectivity estimation as well

as simple decoding algorithms [17]. Similar tgumpy, it is built on top of widely used

scienti c computing libraries such as NumPy[[18], SciPy [19handas and scikit-learn
[20]. Moreover, MNE o ers functions for neuroimaging data irerpretation such as fMRI

analysis. Despite recent developments, the toolbox stithdks some important functions
and methods, such as common spatial pattern algorithm (CSH21] and various popular
machine learning classi ers.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 4

2.4. Wyrm

Wyrm [22] is an open source BCI package written in Python. Theoblbox implements
several functions for processing and visualization of elesphysiological data such as
EEG and ECoG signals. Moreover, Wyrm is suitable for both o ire processing and
real-time applications. Furthermore, the toolbox integra¢s Mushu [[23] a free software
for signals acquisition, and Py [24], which is a frameworkdr BCI feedback applications.

2.5. OpenVIiBE

OpenVIBE [25], another open source BCI platform, is designéda modular fashion and
incorporates an elegant graphical user interface for noeiaisers. Moreover, it provides
a wide range of signal processing techniques and supportsmyacquisition and BCI
paradigms such as P300[26,127] and SSVEPI[28]. One of OpenVil&tivantages with
respect to the previously mentioned toolboxes is that it cahe scripted using both LUA
and Python. In addition, it o ers a direct interface to Matlab. OpenVIBE currently
provides three classi ers: LDA, SVM as well as a combined clags for a multi-class
problem classi cation.

Table 1. General Overview of Existing BCI toolboxes.

Software platform Programming language Features
Wide range of algorithms
Well-designed GUI
Simple and Robust
BCI2000 C++ Wide usage by BCI community
Modular programming
EEG, MEG and fMRI data analysis

BCILAB Matlab

MNE Python Good documentation
EEG and ECoG signals

Wyrm Python Real-time capabilities
Integration with other platforms
OpenViBE LUA, Python Modular AP1 .

Supports many acquisition devices
Hybrid BCI
Gumpy Python Real-time capabilities

O ine and online analyses
Deep learning toolbox

2.6. Distinctive features of gumpy

Despite the tremendous number of features that current BClaolboxes o er, they still
exhibit some limitations [13] such as a lack of important pressing and classi cation
methods, limited real-time performance, or lack of experiemtal paradigms to conduct
online BCI experiments. More importantly, none of the exishg packages combine classic
machine learning algorithms and deep learning techniques signals decoding. However,

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 5

gumpy covers a wide range of classi cation methods including seaemachine learning
classi ers, voting classi ers, feature selection algotims and di erent deep learning
architectures such as LSTM, CNN and RCNN. Additionally, we prodde many showcase
examples of the usage gumpyfor EEG and EMG signals decoding, thereby facilitating
the design of hybrid BCI systems. Furthermoregumpyintegrates di erent experimental
paradigms for motor imagery, EMG, SSVEP, EEG reach-to-grasmovements recording
and hybrid BCI, which can be easily used and extended by enders. Importantly,
gumpy supports oine analysis as well as online BCI applications. With the lab
streaming layer (LSL) [29] for data acquisition, the providd experimental paradigms
for biosignals recording andyumpy package for EEG and EMG data processing and
decoding, we envisiogumpyto be a suitable toolkit for conducting online hybrid BCI
experiments.

3. Gumpy toolbox: design, main functions and features

3.1. General overview of gumpy's modules

Gumpy comprises six modules for plotting, processing, andassication of EEG
and EMG signals. Moreover,gumpy incorporates di erent deep learning models and
experimental recording paradigms. This section provides eondensed overview of
gumpys modules and its main functionality, which are summarizeéh Figure[1. Some
of the modules are described in more detail in the followingestion on exemplary use-
cases. Particularly, subsectiof 3\3 covers the availableep learning classi ers. Where
possible,gumpy leverages existing and well established scienti c and numeal libraries
such as NumPyI[1B], SciPy [19] and scikit-learn [20] to computhe classi cation results
or to perform signal analysis. For instancegumpys SVM classi er utilizes scikit-
learn. However,gumpy precon gures its classi ers with default parameters that ere
found to be suitable in typical BCI applications. In addition, gumpy can perform a
grid search to tune their settings. One ofjumpys core design principles is to allow
users to easily extend its functionality, thereby faciliting usability, customizability
and collaborative development. The latter is further enaleld using our public git
repository athttps://github.com/gumpy-bci through which we solicit the community
to contribute feedback and code. In addition, the websitbttp://gumpy.org/ |provides
an API reference and usage examples in the form of Jupyter notsdks.

3.2. Gumpy's experimental paradigms

3.2.1. Classic motor imagery movementsGumpy provides a cue-based screening
paradigm to record classic motor imagery; namely the imagtion of the movement
of left hand, right hand or both hands as shown in Figurg]2. At mrde ned times, the
screen displays a cue in the form of an arrow pointing eitheeft, right or both ways.
The participant has to perform a hand movement imagination @ordingly.

https://github.com/gumpy-bci
http://gumpy.org/

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces

1"#$%
1"H$%8& ()" 1+

95%*0,#*-("./
$0'8,14)
#RADI'H-Y0-, | ("+H#*

0 o _ >-.,-*/?%@0,4
- ’(,#*/<6_

5-1/'5$,)02.

0"# &$$06$7

6.)),2/#1(10/ #1%0%
27 (1;10)$/710/99
S%@0,8/<6=/TI9A/U[IGAV
++MO3

6EE/H,(?/+FAF
N+FGRM-,../:EE
&**$R+7?'. 1H/6EE
:6EE

gumpy &%/ *0- 1]
#18%)

1"#$%&™"'$,20.

()" #*+ H0I& ("#* +30-..11

0" #+,-& 0"# +1(-0 ()" #+#0$8 0"#* +12-&)%2

4 N N N
<"((*0H10(?/7,.(*0)D:>6/2"0K*)D/ 61##1-1)$'(,. E10#.1)$.,D +MGD/N&ID/ON&IC

AQ'B/C</99AD
E+F/G=/99AD/ || E10#'.B'(,1-D/ 61-7"),1-/#(0,5D | $'((*0-) D//36l/ || 601))K".,8(,1- D| PEED/GN3D/:-81#/
E+F/A0)$/9GAD/ || =61D/&,)20%(*/ 44FDIN22"02%/ | | #5(?18)DI3LH*0/ | F#%)*0,%))$.,[D | 410%)(D/E',K*/
=H$H-(12") (14 || IK*H(DI<11()(0'$/ | 0%)".0D/=6ID/36 | 7*("0%) DIIK**(/| +(0'(,7,*8" 71.8| | @' %*P/N&I/H,(?/
710#0/(201"121 || #4(218)DI6L#$S"(*/| | JK**(8*(,)D/ || 7%("0%) DI4*("0*/|)$.,(DHO'(,7,*8 | |)20,-Q'* DN11,)(,2
2.)/,-2%0,(-2% 2100*.(,1-) 3+&/"),-1/ Y *2(,1-DIGH ||)2"77.%)$..(*10%)),1-D// M(,-!

I+ 22L)/#+(?18 2.),7,%0)

N AN PAN J

Figure 1: Overview ofgumpy toolbox modules and functions.

b
Imagination
49 | oflefthand
movement
e
Imagination
L & | of right hand
T T e e
[Fixation| Cue display
ik AT Pause N
»
| | | [i [A tins
1 2 3 4 5 6 7 8 ¢+ 9 10

{
A
(o)
-

Figure 2: lllustration of recording paradigm for three motorimagery EEG data
acquisition. (a) Photograph of a recording session. (b) Olinie of the designed recording

paradigm.

3.2.2. Reach-to-grasp motor imagery movementssumpy incorporates a paradigm to
record EEG reach-to-grasp movements imagination of six dirent objects placed on
a shelf with xed positions as shown in Figurd]3. The subject iasked to imagine
a reach movement by bringing the cursor (square) toward ond the six center-out
target locations (up-left, up-right, center-left, centefright, down-left, down-right). Once

the square hits the target, it turns red which triggers the pdicipant to now imagine

performing a grasping movement on that speci c target.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 7

a

Figure 3: lllustration of recording paradigm for reach-to-gasp movements. (a) Display
requests subject to imaginatively reach for the mid-left quin the shelf. (b) Subject is
requested to imagine grasping the center-right cup.

3.2.3. Grasp poses and related nger forces from surface EMG signals special
experimental paradigm was designed to record SEMG signatsrh the forearm during
four di erent hand movements (2-digit grasp, 3-digit grasp st, hand open) as shown
in Figure @ with two possible force levels (high, low). Straigauge sensors placed on
the ngertips measured the applied grasping forcé [30] .

Figure 4: EMG recording paradigm. (a) Di erent hand gesture eénderings prompting
subjects. (b) Recording setup of EMG signals during grasp mements.

3.2.4. Gumpy-SSVEP paradigmThe SSVEP paradigm consists of four ickering
checkerboards blinking at di erent frequencies (13, 15, 1&nd 19 Hz), as shown in
Figure[§. The subject has to focus on one of the ickering chestboards in order to
evoke an SSVEP response. Simultaneously, EEG signals reaogdfrom O1, OZ and

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 8

O2 electrodes were performed. The paradigm was implementading PyGame [[31],
a gaming-oriented Python library for graphical user intedices. It requires a monitor
supporting su ciently high (or dynamic) refresh rates.

Figure 5: lllustration of the recording paradigm for SSVEP.

3.2.5. Gumpy's experimental paradigm for real-time hybrid BCIThe hybrid BCI
paradigm allows end users to perform online hybrid BCI expienents. For instance,
this paradigm was used to perform a sequential hybrid BCI t&s where the subject
was asked to imagine left or right hand movement imaginatioand execute thereafter
the same imagined movement. For that, a simultaneous recand of EEG and sEMG
signals was performed using two synchronized g.USBamp dedc Signals were sampled
at 512 Hz and the LSL was used for data acquisition in a masteiage communication
fashion. It should be noted that the developed paradigm calibe used to simultaneously
collect data from other devices (e.g. Myo armband [32] and ¢hg.USBamp) and could
be easily modi ed to acquire other types of biosignals. A deiled documentation of
the hybrid paradigm as well as the developed code are made ficlly available within
gumpy under https://github.com/gumpy-bci

3.3. Gumpy's deep learning module

Despite the numerous successful applications of deep nduretworks [10], the
development of deep learning methods in the BCI eld is stiljuite rare [12]. In this
section, we describgumpys deep learning module, which is based on Theanal[33] and
Keras [34], as well as di erent implemented and available tveork architectures.

https://github.com/gumpy-bci

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 9

3.3.1. Recurrent neural networks (RNN) Recurrent neural networks and particularly
long short-term memory (LSTM) have been used successfully thodel the temporal
characteristics of diverse non-stationary and non-linearme-series signals. Likewise,
such methods should be applicable to EEG data as well [35]. @py makes LSTMs
and other recurrent architectures like vanilla RNN and recuent convolutional neural
networks (RCNN) readily available and provides well-documéad example code. The
architecture of the LSTM algorithm distributed with the initial gumpy release is shown
in Figure [6. It consists of one LSTM layer consisting of 128 ¢gland an input layer
whereE represents the electrode channel$, represents the number of samples in every
channel andK the number of output classes.

Softmax
[K classes]

I S

Dropout

Figure 6: Implemented LSTM architecture.

3.3.2. Convolutional Neural Network (CNN) The proposed CNN model architecture
is illustrated in Figure []. The network architecture is inspied by CNNs used in
the ImageNet competition, such as VGGNet [36] and AlexNet [37].t lses stacked
convolutional layers with decreasing size and increasingmber of Iter kernels in deeper
layers. After each convolutional layer, batch normalizatio is applied to reduce covariate
shift in intermediate representations and improve robus&ss. The actual spectrogram
representation of the EEG signal is computed in the rst layeand used as an input to

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 10

the model. A more detailed description of the CNN architectwr and its implementation
will be provided elsewhere [38].

EEG
[E xT]

STFT -

2D Convolution
Batch Normalization
2D Max Pooling
RelLU

2D Convolution
Batch Normalization
2D Max Pooling
RelLU

2D Convolution
Batch Normalization

2D Max Pooling

" RelLU Softmax
Dropout (0.2) [K classes]
Fully Connected

Figure 7: The proposed CNN architecture, wher& is the number of electrodesT is
the number of timesteps andK is the number of classes.

4. Oine analysis case studies

In this section, we show how to usgumpyto perform o ine analysis of EEG/EMG data.

As a result, researchers can easily reproduce the obtainedguks using our provided
Jupyter notebooks, our freely available EEG/EMG recorded da or the EEG dataset
2b from BCI competition 1V [39] as well aggumpys available experimental paradigms.

4.1. Decoding of two motor imagery movements from Graz 2b EEG signals

We usedgumpys signal and classi cation developed modules to processdadlassify an
existing EEG dataset known as 2b EEG dataset from "BClI Compéton IV" [40]. The
source code (Jupyter notebooks) utilized in these o ine exaples are freely available
under http://gumpy.org/

4.1.1. Standard Machine learning techniquesThree feature extraction methods, i.e.
logarithmic band power (BP) [41], common spatial patternsG@SP) [42,/43] and discrete
wavelet transform [44], have been investigated and testedn general, CSP features
maximize the pairwise compound variance between two or mootasses in the least
square sense, whereas wavelet features provide an e ectiwge-frequency representation

http://gumpy.org/

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 11

of non-stationary signals[[44]. We wish to emphasize that tise feature extraction
methods have been advocated by BCI researchers(in [7]. Aftetracting discriminative
features, gumpy.features.sequential _feature _selector was used to automatically
select a subset of features in the feature space using the wsgial feature selection
algorithm (SFSF) [45]. Thegumpy.split module provides several methods for splitting
data. Herein, we used the hold-out strategy by splitting the ataset into 80% for
training and 20% for test using thegumpy.split module. A 10-fold cross validation
was performed on the training set to select the best featuresing six di erent classi ers
from the gumpy.classification ~ module. Afterwards, the new generated subsets based
on the selected features were fed into each classi er and nprvedictions were made on
the testing dataset. Furthermore, we wish to mention that tle classi cation module
incorporates a voting classi er, which employs an ensembdé classi ers to "vote" using
their respective results. Finally, it should be noted thatgumpy.classification can
also perform a grid search to select the best hyper parametefior SVM and random
forest classi ers for a given k-fold cross validation. Not&ably, BP slightly outperforms
the other two feature extraction methods and provides ovellabetter results across
the dierent nine subjects. The obtained classi cation reslts with the BP feature
extraction method with six di erent algorithms including the voting classi er are shown
below in Figure[8. Overall, the obtained results from individal subjects show inter-

100 HEE QLDA N R I N\B I KNN m RF Il VotingC
90

80

7
6
5
4
3
20 S1 S2 S3 S4 S5 S6 S7 S8 S9

Subject

Accuracy (%)
o © o o

o

Figure 8: Accuracy results obtained for individual participats using the BP features
and six di erent machine learning classi ers, namely quaditic LDA (QLDA), logistic
regression (LR), naive bayes (NB), k-nearest neighbors (KNNjandom forest (RF) and
the voting classi er (VotingC).

and intra-subject variability. According to their performance, the nine participants
could be classi ed into three categories: Bad participantare S1, S2, S3 and S7 with
a classi cation accuracy between 60 to 70%, good participsnare S5, S6, S8 and S9

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 12

with a classi cation accuracy between 70 to 82%, and an ext®it participant S4 with
an average classi cation accuracy of 93.75%. It is worth niofy that a comparable
performance was obtained with the CSP features. A Jupyter nebook showing how to
use the three di erent feature extraction methods with the derent available classi ers,
is made publicly available undehttps://github.com/gumpy-bci

4.1.2. Deep learning techniquesfwo deep neural network algorithms for motor
imagery classi cation using thegumpy.deeplearning module were investigated and
tested: convolutional and recurrent neural networks. Firég, an LSTM model with
only one hidden layer consisting of 128 LSTM memory cells wassted. To assess
the model's capability of autonomously learning discrimiative features, only raw EEG
signals were fed into the algorithm. The large number of pangeters of the LSTM model
makes the model prone to over tting. A dropout layer with a dactivation rate of 0.05
between the output and the LSTM layer partially mitigates ths problem. Second, a
CNN algorithm was implemented and tested. Recorded EEG sigsavere rst cropped
into short, overlapping time-windows. Thereafter, a fast &urier transform (FFT) was
performed on each crop, assuming stationarity in short timfames. Spectrograms from
three electrodes C3, C4 and Cz in the frequency band of 25-40 Were computed and
used as inputs to our proposed CNN algorithm. Parameters weset to n = 1024 FFT
samples and a time shift of s = 16 time steps between STFT windewFor each of the
nine participants, a strati ed 5-fold cross-validation wa applied. Four folds were used
for training and validation (90 % training, 10 % validation) and the last fold was used
for testing. Finally, we point out that early stopping [46] wa used to avoid over tting.
That means the model is trained until the minimum of the valiétion loss is found and
then tested on the test data to measure its generalization pabilities. Interestingly, the
obtained results with the CNN model outperformed the state athe art results on the
same dataset, which were obtained with classic methods. Hawe LSTM results were
similar to those obtained with traditional methods (e.g. gadratic LDA) as shown in
Figure[9. An intuitive reason of that could be the limited amounof training data. As
a result, reducing model complexity by decreasing the numbef cell memories would
be a promising solution to improve the developed algorithmAfter validating the o ine
results, we wish to mention that the testing phase was done lame and a successful
real-time control of a robot arm was performed using the traed proposed CNN model
as shown in the supplementary video in the supplementary neials sectior| J.

4.2. Decoding of natural grasps from surface EMG signals

Making a prosthetic hand grasp an object precisely and e dessly is a crucial step
in prostheses design_[47]. Additionally, dexterous grasginof objects with di erent
shapes and sizes seems to be a big challenge in today's prestis. In this section, we
demonstrate the usage ofjlumpy to classify four movements (Fist grasp, 2-digit grasp,
3-digit grasp, hand open) with two di erent force levels (lav, high). Data used in this

https://github.com/gumpy-bci

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 13

100 HEE QLDA Il Proposed CNN Il Proposed LSTM

9
8
7
6
5
4
3
20 S1 S2 S3 S4 S5 S6 S7 S8 S9

Subject

Accuracy (%)
© © © o o o

o

Figure 9: Accuracy results obtained for individual participats with QLDA, CNN and
LSTM models.

example study were recorded at our lab and are made publiclyalable at gumpys
website. Di erent steps for EMG processing usingumpy are described below.

Filtering EMG signals were band-pass ltered between 20 and 255 Hz andcio ltered
at 50 Hz using the gumpy.signal module. Feature extraction and normalization:
Filtered EMG signals were analyzed using 200 ms sliding timeindows with 50 ms
overlapping [48]. The length of the sliding window was chaséor the purpose of allowing
real-time control. For each interval, the computed mean otie signal was subtracted and
divided by the standard deviation. Besides, the resulting MG signals were normalized
by the maximum voluntary isometric contraction (MVIC) magnitude. Thereafter, the
root mean square (RMS) was computed in each time window andifento the classi er.
We wish to stress that we used the same feature extraction nhetd to classify each type
of the associated force level (low, high).

Feature selection and Classi cation Herein, the SFFS algorithm was used to select a
certain number of features in thek range (10, 25). Dierent classi ers were used to
predict one of four possible hand poses and one of the two ®ievels. O ine results
using SVM with 3-fold strati ed cross validation are illustrated in Figure[10. Obtained
prediction results during the real-time test, are presentkin the next section. The
validation accuracy for three di erent subjects were 82% (4%) for posture classi cation
and 96% (3%) for force classication. It should be noted that those mults were
obtained after performing three-fold cross validation usg gumpys validation module.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 14

Il Force Il Hand gesture
100

90
80
70

60

Accuracy (%)

50

40

30

20

S2 S3
Subject

Figure 10: Obtained results for hand posture and force classition with 3-fold cross-
validation.

5. Gumpy real-time applications

Aside of the oine capabilities, gumpy can be used in an online fashion to perform
real-time experiments such as robot arm control using SSVEBnline EMG decoding
and real-time control of robots using EEG signals. All the rdgime gumpy case studies
as well as the developed real-time experimental paradigmseamade available under
https://github.com/gumpy-bci/gumpy-realtime . Importantly, these case studies
can be easily modi ed or extended bgumpyend-users to suit their speci ¢ applications.

5.1. Real-time Robot Arm Control using SSVEP-based BCI

In this section, we further test and validategumpys real-time capabilities by online
detection and classi cation of SSVEP signals for a robot armoaitrol. SSVEP are brain
events measured after a visual ickering stimulation of a @quency between 3.5 Hz and 75
Hz. They appear as a peak in the frequency spectrum of the EE@sals recorded over
the primary visual cortex at the respective stimulus frequecy [28]. Thegumpy SSVEP
paradigm described previously in section 3.2.4 was used éata recording. During the
live experiment, the subject had to focus on one of the four splayed checkerboards
ickering at di erent frequencies. Power spectral density(PSD) features from the
electrodes O1, 02, and Oz over the occipital lobe were extted, normalized and a
principal component analysis (PCA) was performed to reducen¢ dimensionality. A
random forest classi er was trained o ine on recorded data allected from four di erent
subjects (3 male, 1 female). A 5-fold strati ed cross validaon was performed to evaluate
model performance and to tune hyper-parameters. Afterwardshe trained random

https://github.com/gumpy-bci/gumpy-realtime

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 15

forest classi er was used in the testing phase to perform amlne classi cation, where
new predictions on the test data were performed. Thereaftea command was sent to
move a six degrees of freedom (6-DoF) robot arm in four di erémlirections according

to the position of the detected ickering object. A owchart of this SSVEP project

is shown in Figure[I1L. In addition, a supplementary video of th work, which shows
a successful real-time robot arm control using SSVEP-basedCBis available in the

supplementary materials section]7.

— . Trained
13 Hz SIHE EEG_Data Classifier

Recognized
Stimulus

< Robot Control >

Visual
Stimulus

19HzH15HZ\

Figure 11: SSVEP project owchart.

5.2. Real-time prosthetic hand using surface EMG signals

Herein, we describe the online decoding of three grasp posemnely st grasp, 2-digit
grasp and 3-digit grasp. The oine analysis and processingescribed previously in
section[4.2 were used. The developed algorithm was testedteo healthy subjects. 72
trials (24 for each posture) were rst acquired to train the nodel. Thereafter, new 30
online trials (10 per posture) were used for online testingflhe number of o ine trials
used for model training has been reduced in retrospectiveaysis to evaluate the e ect
of the training data size on the online classi cation accuy as shown in Figuré 112. It
should be noted that a 3-fold cross validation was used to irathe (o ine) model in the
rst place. Figure |12 shows that with 72 o ine trials, an accuracy of 82% and 92% was
reached for S1 and S2, respectively. Overall, it is clear thténe accuracy could be even
further improved by increasing the number of training triak. However, by using 24 trials
for each posture, a good compromise between duration of maig time and accuracy of
training was found. A supplementary video of this work, whit shows a successful real-
time prosthetic hand control using SEMG is available in thegpplementary materials
section[T.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 16

100

H S1 = S2

90

80

70

6

5

4

3

20 5 10 15 20 24

Number of offline trials per posture

Accuracy (%)
o o© o

o

Figure 12: Online Accuracy of EMG classi cation without force

5.3. Online hybrid BCI using EEG and surface EMG for reach-to-grasp movements

In this section, we present a case study for the hybrid BCl appach, where the
decoding of motor imagery (MI) movements from EEG (Sectioh.#) was combined
with posture classi cation from SEMG (Section| 5.) in a secential fashion. For that,
2-MI movements, namely left and right imagined hand movem&nhand three classes of
hand postures (st, 2- nger pinch and 3- nger pinch) were deoded. Classic machine
learning and deep learning approaches were combined to peni an online decoding. In
this example study, the online mode was designed to performach-to-grasp movement
decoding, where a KUKA robot arm[[49] was controlled by Ml sigals (reach movement)
whereas a prosthetic hand was controlled using SEMG signdtgrasp movement) in a
single online experiment. One bene t 0 ered by combining EE and EMG [50] is the low
latency provided by EEG when decoding reach movements as et the rich spectro-
temporal information that can be decoded from sEMG when clagying complex grasp
movements [[50} 48]. In this example study, the LSL was used sgnchronize di erent
data streams (EEG, EMG) and the temporal procedure was arrged as a state machine.
During the o ine recording, the program alternates betweenwo states, which execute
the tasks related to EEG and EMG experiments. This means theapticipant performed
the EEG experimental paradigm rst. Thereafter, the EMG experimental paradigm
was performed. This procedure was repeated for a de ned nueibof o ine trials,
for instance 72 as was shown in the online EMG experiment incsien 5.2. After
completion of the o ine experiments, the program enters a stte, where the model of
posture detection was trained based on the o ine recorded EM data whereas the Ml
pre-trained model was retrained based on the o ine EEG datalt should be noted that
the pre-trained model can be either a CNN or a standard machidearning classi er,

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 17

depending on the end-user's con guration. Afterwards, therpgram enters the online
phase, which consists of three states (EEG, EMG and classation). These states are
performed sequentially for a de ned number of online trialsLikewise, the EEG state
was rst performed and was followed by the EMG state. As a re#iidata were classi ed

and the robot arm as well as the prosthetic hand were contrelll to perform a reach-to
grasp movement as shown in Figure [L3. It is worth noting that dérent experiments

investigating the aforementioned hybrid approach are cuently conducted and results
will be reported in another scienti ¢ paper.

223,+'0(%

5#0"() i <40,
o %)1&6-"07&,7" -?f): f"(o("' 0p0*- Mg TH
#-8)H)(& . ,
- O (
=).7"(0
%)7
I"HE%& ()*$+,-) *-/"(0,*1,
223,'(/,243,+"0('%+
3-'+
243,+"0(% .
' TR A <A ,
'?f):ﬁ(o("’ IR

3$#;>, 7% @*A

Figure 13: The proposed hybrid BCI experiment for reach-torgsp movements decoding.

5.4. Live generation of spectrograms

In this section, we show how to usgumpyto generate and stream spectrograms, which
could be used later on for di erent online applications. Gegrally, spectrograms are
generated from data within a circular bu er that stores a preletermined number of
samples up to the most recent one. The capacity of this bu eregpends on the parameters
used for the short-time Fourier transform (STFT), namely thewindow length and the
overlap between consecutive windows. The window length ieasen as a compromise
between frequency resolution in lower frequency bands animng resolution in higher
ones. Prior to the STFT's application, the data are passed tlmugh the Iter bank to
ensure consistency in the signal range over all spectrogmnThe training of a suitable
network is realized with data augmentation methods, which mic the live processing,
so that the network is presented with similar data throughoutraining and real-time
application. The live generation system has been tested fivtame rates up to 128 Hz on

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 18

a PC with a 2.8 GHz quadcore CPU, showing a stable performancerdughout. The
source code of this live interface is available in the gumpealtime repository. Figure
14 and 15 summarize the whole process of live spectrogrameegation. As shown in
the video, a noticeable delay (1.4 sec) was experienced when performing the real-
time experiment. This delay can be attributed almost entirly to the CNN processing.
Hence, modern hardware accelerators like NVIDIA TensorRT [51htel Movidius NCS
[52] or even IBM TrueNorth [53] could reduce the latency drasially and provide much
higher throughput for our developed deep learning models ah the standard PC we
have employed.

Figure 14: Data streaming via LSL.

6. Discussion and Conclusion

6.1. Gumpy toolbox advantages

In this paper, we unveiledgumpy a free and open source Python toolbox for BCI
applications. Gumpy includes a wide range of visualizatigrprocessing and decoding
methods including feature selection algorithms, classic athine learning classi ers,
voting classi ers and several deep learning architecturesAdditionally, the toolbox
is not only limited to EEG signals, but it can be used to interpet SEMG signals as
well, hence spurring the usage of hybrid BCI concepts. Furgnmore,gumpy provides a
turnkey solution to perform online BCI experiments by prowling several experimental
paradigm examples including SSVEP, classic motor imagery waments, reach-to-grasp
movements, EMG grasping tasks and online hybrid BCI experiemts. In the previous
sections, we demonstrated the usage glimpy with two showcase examples for o ine
analysis using an existing EEG dataset and new EMG data rected at our lab.
Similarly, gumpys real-time capabilities were shown through the control ad robot arm
using SSVEP-based BCI and the real-time control of a prosthethand using SEMG.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 19

Figure 15: A frame of a live stream. Top: Filtered signal during trial. Blue and

red traces illustrate channel 1 and channel 2, respectivelyertical lines indicate visual
(orange, arrow at t = 0 s) and acoustic cues (red). Bottom: Gesrated spectrograms
from data within the grey rectangle shown above.

More relevantly, gumpy includes di erent deep learning models such as CNN, RCNN
and LSTM which were developed and tested in this paper to clsify sensory motor
rhythms from EEG signals. Interestingly, not only a reprodaibility of previous results
was achieved with gumpy but also some of the results (e.g. sec 4.1) outperformed
state-of-the art results on the same datasets. Thus, gumpypuld foster the development
of more robust EEG/EMG decoding algorithms and open new avaas in ongoing hybrid
BCI research. Finally, it is important to highlight that di e rent BCI research groups
are now testing the toolbox and many students have already wed with it. Most of
the students managed to master the use of the toolbox in ledsain a week.

6.2. Future development of gumpy toolbox

Despite the considerable number of functions, algorithmad experimental paradigms
that gumpy provides, further processing methods are under developrieRarticularly,

developing an experimental paradigm for error-related pential (ErrP) recording as well
as providing a case study for ErrPs decoding would be of utntasnportance for BCI

researchers [54, 55]. Likewise, a P300-based BCI spellerapggm is still missing and
should be added t@umpys experimental paradigms. Moreover, some of the widely-ac
techniques in BCI research, such as source localization J[2hd connectivity analysis
[57] should be integrated within thegumpy toolbox in future developments. Aside
from that, it would be important to include channel selectim techniques [58] as well
as other classication methods to the toolbox, such as Riemaian geometry-based

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 20

classi cation [59] and restricted Boltzmann machines [60yvhich have been advocated
by BCI researchers [7]. Moreover, in addition to the propodesequential architecture in
section 5.3, it would be important to test the simultaneous ybrid BCI, where EEG and
EMG are fused to yield one control signal. This can be done byerging classi cation
probabilities of EEG and EMG using Bayesian fusion technias [5]. Furthermore, as
gumpy was solely tested with EEG and EMG signals, performing morenalyses with
other human data, such as fMRI, ECoG or MEG could further vatlate the usefulness
as well as the applicability of the toolbox, thereby spur theise ofgumpy in other BCI
applications. Last, we wish to highlight that some other exaple studies investigating
the fusion of di erent multimodal signals [58] are now undedevelopment. Interesting
works proposed before by Y. Let al. about combining P300 and motor imagery [61]
as well as combining SSVEP and P300 [62] present good sourcesnspiration for
developing and testing new multimodal BCI case studies. Algrthese lines, it would be
undoubtedly important to investigate the combination of ErP and EMG as has been
recently proposed by J. DelPreteet al. in their novel work [63].

6.3. Conclusion

This paper presents and thoroughly describegimpy, a novel toolbox suitable for hybrid
brain computer interfaces. The overarching aim ofjlumpy is to provide a libre BCI
software, which includes a wide range of functions for praasng and decoding of EEG
and EMG signals as well as classi cation methods with both &ditional machine learning
and deep learning techniques. The oine usage of gumpy is demstrated with two
di erent showcase examples. Firstly, gumpy is used to decodeo motor imagery
movements using a publicly available EEG 2b dataset from thBCIl competition IV.
Di erent feature extraction and classi cation methods hae also been implemented and
tested. Importantly, the obtained results using thegumpy CNN algorithm showed
some improvement compared to obtained state-of-the art nglés on the same dataset.
Furthermore, gumpy is also used to decode dierent grasp pes from our recorded
gumpy signals. Additionally, we show gumpy's real-time capabiliés within a successful
robot arm control using SSVEP signals and a prosthetic hand ewol using sEMG.
Last, we provide a case study where gumpy can be used to pemfoonline hybrid
BCI experiments. Overall, there are promising future trensl for its use in various BCI
applications. With gumpy, we envision to pave the way for a newhase of open source
BCI research.

7. Supplementary Materials

Supplementary video 1 about real-time robot arm control using SSVEP-based
BCI: http://youtu.be/Dm-GGcImKjY

Supplementary video 2 about EEG signals decoding using CNNSs:http:
/lyoutu.be/8hM7tOd7M7A

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 21

Supplementary video 3 about prosthetic hand control using surface EMG
signals: http://youtu.be/igOEXpwfBZA

8. Source code and documentation

The source code of gumpy toolbox is released under the MITditse and available with
a detailed documentation athttp://gumpy.org . In addition, we provide a tutorial-like
overview of the toolbox using the python documentation genator Sphinx. With our
provided Jupyter notebooks, we facilitate the usage of the adbox and we give end-users
insightful information how to adjust parameters in the toobox.

9. Funding

This work was supported in part by Ph.D. grant of the German Acdemic Exchange
Service (DAAD) and by the Helmholtz Association.

10. Acknowledgments

The authors would like to thank Othmane Necib, Remi Laumont, Maxime Kirgo,
Bernhard Specht, Daniel Stichling, Azade Farshad, and Seh&s Martinez, Constantin
Uhde, Jannick Lippert and Chen zhong for technical assistance We gratefully
acknowledge the developers of Python, Theano, Keras, stildarn, NumPy, SciPy, LSL
and other software packages that gumpy builds upon. Furtherore, we would like to
thank Stefan Ehrlich for his helpful comments on the manusigt. Last, the authors
would like to thank Prof. Dongheui Lee and Dr. Pietro Falco fofruitful discussions
and for providing the prosthetic hand and the KUKA robot arm.

11. Conicts of interest

The authors declare that the research was conducted in the sgnce of any commercial
or nancial relationships, which could be construed as a pential con ict of interest.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 22

[1] R. G. S. Platts and M. H. Fraser. Assistive technology in the rehabiltation of patients with high
spinal cord lesions. Paraplegia, 31:280{287, 1993.

[2] M. A. Lebedev and M. A. L. Nicolelis. Brain-machine interfaces: From bag science to
neuroprostheses and neurorehabilitation. Physiol Rev, 97(2):767{837, 2017.

[3] J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, and B. He. Noninvasivelectroencephalogram
based control of a robotic arm for reach and grasp tasks.Scienti ¢ Reports, 6(2), 2016.

[4] Y. Li, J. Pan, F. Wang, and Z. Yu. A hybrid BCI system combining P300 and SSVEP and its
application to wheelchair control. IEEE Transactions on Biomedical Engineering, 60(11):3156{
3166, 2013.

[5] R. Leeb, H. Sagha, R. Chavarriaga, and J. d. R. Milan. A hybrid bci based on the fusion of EEG
and EMG activities. Journal of Neural Engineering, 8:225{9, 2011.

[6] D. J. McFarland, W. A. Sarnacki, and J. R. Wolpaw. Electroencephalogaphic (EEG) control of
three-dimensional movement. Journal of Neural Engineering, 7(3):036007, 2010.

[7] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger. A
review of classi cation algorithms for EEG-based brain-computer interfaces: a 10 year update.
Journal of Neural Engineering, 15(3):031005, 2018.

[8] Y. Rezaei Tabar and U. Halici. A novel deep learning approach for classi cabn of EEG motor
imagery signals. Journal of Neural Engineering, 14(1):016003, 2017.

[9] R. Ramadan and A. Vasilakos. Brain-computer interface: Control signals reiew. Neurocomputing
223:26{44, 2017.

[10] Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436{444, 2015.

[11] S. Hochreiter and J. Schmidhuber. Long short-term memory.Neural computation, 9(8):1735{1780,
1997.

[12] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer, M. Glasstetter, K. Eggensperger,
M. Tangermann, F. Hutter, W. Burgard, and T. Ball. Deep learning with con volutional neural
networks for EEG decoding and visualization. Human Brain Mapping, 38(11):5391{5420, 2017.

[13] C. Brunner, G. Andreoni, L. Bianchi, B. Blankertz, C. Breitwieser, S. Kanoh, C. A. Kothe,
A. lecuyer, S. Makeig, J. Mellinger, P. Perego, Y. Renard, G. Schalk, | P. Susila, B. Venthur,
G. R. Muller-putz, C. Brunner, C. Breitwieser, G. R. Mulle r-putz, C. Brunner, C. A. Kothe,
S. Makeig, G. Andreoni, P. Perego, L. Bianchi, B. Blankertz, B. Venthur, S. Kanoh, J. Mellinger,
Y. Renard, A. lecuyer, G. Schalk, and I. P. Susila. BCI software platforms.

[14] C. A. Kothe and S. Makeig. BCILAB: a platform for brain-computer interfac e development.
Journal of Neural Engineering, 10, 2013.

[15] A. Delorme and S. Makeig. EEGLAB: an open source toolbox for analysis of singltrial EEG
dynamics. Journal of Neuroscience Methods134(1):9{21, 2004.

[16] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw. BCI2000: a
general-purpose brain-computer interface (BCIl) system. IEEE Transactions on Biomedical
Engineering, 51(6):1034{1043, 2004.

[17] A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier, C. Brodeck, R. Goj, M. Jas,
T. Brooks, L. Parkkonen, and M. Hamalainen. MEG and EEG data analysis with MNE-Python.
Frontiers in Neuroscience, 7, 2013.

[18] S.V.Walt, S. C. Colbert, and G. Varoquaux. The NumPy array: A struct ure for e cient numerical
computation. Computing in Science & Engineering 13:20{23, 2011.

[19] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source seiti ¢ tools for Python, 2001{.
[Online; accessed: 2017-08-03].

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, M. Blondel O. Grisel,
P. Prettenhofer, V. Dubourg R. Weiss, A. Passos J. Vanderplas, D. Courapeau, M. Brucher,
M. Perrot, and Edouard Duchesnay. Scikit-learn: Machine learning in python. Journal of
Machine Learning Research 12:2825{2830, 2011.

[21] M. Grosse-Wentrup and M. Buss. Multiclass common spatial patternsand information theoretic
feature extraction. IEEE Transactions on Biomedical Engineering, 8:1991{2000, 2008.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 23

[22] V. Bastian, D. Sven, H. Johannes, H. Hendrik, and B. Benjamin. Wyrm: A train-computer
interface toolbox in python. Neuroinformatics, 13(4):471{486, 2015.

[23] B. Venthur and B. Blankertz. Mushu, a free- and open source BCI gjnal acquisition, written
in Python. In Conference proceedings : ... Annual International Conference of e IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medcine and Biology
Society. Conference volume 2012, pages 1786{8, 08 2012.

[24] B. Venthur, S. Scholler, J. Williamson, S. Dahne, M. Treder, M. Kramarek, K. Muller, and
B. Blankertz. Py |a pythonic framework for feedback applications and st imulus presentation
in neuroscience. Frontiers in Neuroscience, 4:179, 2010.

[25] Y. Renard, F. Lotte, G. Gibert, M. Congedo, E. Maby, V. Delannoy, O. Bertrand, and A. lecuyer.
Openvibe: An open-source software platform to design, test, and use bhim-computer interfaces
in real and virtual environments. Presence 19(1):35{53, 2010.

[26] J. Sauvan, A. lecuyer, F. Lotte, and G. Casiez. A performance model otelection techniques for
P300-based brain-computer interfaces. IMCHI, pages 2205{2208, 2009.

[27] Y. Li, J. Long, T. Yu, Z. Yu, C. Wang, H. Zhang, and C. Guan. An EEG-based BCI system for
2-d cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Transactions on
Biomedical Engineering, 57(10):2495{2505, 2010.

[28] Y. Wang, X. Gao, B. Hong, C. Jia, and S. Gao. Brain-computer interfaces based onisual evoked
potentials. IEEE Engineering in Medicine and Biology Magazine 27(5):64{71, 2008.

[29] Lab streaming layer. Available: https://github.com/sccn/labstreaminglayer

[30] A. Gailey, P. Artemiadis, and M. Santello. Proof of concept of an online EM5-based decoding of
hand postures and individual digit forces for prosthetic hand control. Frontiers in Neurology,
8:7, 2017.

[31] Pygame, [Online; accessed 2017-05-05]. Availablettps://www.pygame.org/

[32] M. Sathiyanarayanan and S. Rajan. MYO armband for physiotherapy healthcae: A case study
using gesture recognition application. In2016 8th International Conference on Communication
Systems and Networks (COMSNETS) pages 1{6, 2016.

[33] Theano Development Team. Theano: A Python framework for fast computatbn of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016.

[34] Frarcois Chollet et al. Keras. https://keras.io , 2015.

[35] M. Li, M. Zhang, X. Luo, and J. Yang. Combined long short-term memory based mtwork
employing wavelet coe cients for MI-EEG recognition. In 2016 IEEE International Conference
on Mechatronics and Automation, pages 1971{1976, 2016.

[36] K. Simonyan and A. Zisserman. Very deep convolutional networks for largescale image
recognition. CoRR, abs/1409.1556, 2014.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classi cation with deep convolutional
neural networks. In Proceedings of the 25th International Conference on Neural Infomation
Processing Systems - Volume ,INIPS'12, pages 1097{1105. Curran Associates Inc., 2012.

[38] Z. Tayeb, J. Fedjaev, N. Ghaboosi, C. Richter, L. Everding, X. Qu, Y. Wu, G. Cheng, and
J. Conradt. Validating deep neural networks for online decoding of motorimagery movements
from EEG signals. IEEE access 2018. (Submitted).

[39] R. Leeb, C. Brunner, G. Mueller-Put, A. Schloegl, and G. Pfurtcheller. BCI competition 2008-
Graz data set b. Graz University of Technology, Austria, 2008.

[40] R. Leeb, F. Lee, C. Keinrath, R. Scherer, H. Bischof, and G. Pfurtsheller. Brain-computer
communication: Motivation, aim, and impact of exploring a virtual apartme nt. |IEEE
Transactions on Neural Systems and Rehabilitation Engineering15(4):473{482, 2007.

[41] N. Brodu, F. Lotte, and A. lecuyer. Comparative study of band-power extraction techniques
for motor imagery classi cation. In 2011 IEEE Symposium on Computational Intelligence,
Cognitive Algorithms, Mind, and Brain (CCMB) , pages 1{6, 2011.

[42] J. Muller-Gerking, G. Pfurtscheller, and H. Flyvbjerg. Designing optimal spatial Iters for single-
trial EEG classi cation in a movement task. Clinical Neurophysiology, 110(5):787 { 798, 1999.

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 24

[43] K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan. Filter bank common spatial pattern (FBCSP) in
brain-computer interface. In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on
Computational Intelligence). IEEE International Joint Conference on, pages 2390{2397. |IEEE,
2008.

[44] F. Sherwani, S. Shanta, B. S. K. K. Ibrahim, and M. S. Hug. Wavelet lased feature extraction
for classi cation of motor imagery signals. In 2016 IEEE EMBS Conference on Biomedical
Engineering and Sciences (IECBES) pages 360{364, 2016.

[45] P. Pudil, J. Novovicova, and J. Kittler. Floating search methods in feature selection. Pattern
Recognition Lett, 15(11):1119{1125, 1994.

[46] D. Erhan, Y. Bengio, A. Courville, P. A. Manzagol, P. Vincent, and S. Bengio. Why does
unsupervised pre-training help deep learning? Journal of Machine Learning, 11:625{660, 2010.

[47] E. Biddiss and T. Chau. The roles of predisposing characteristicsestablished need and enabling
resources on upper extremity prosthesis use and abandonmentDisability and Rehabilitation:
Assistive Technology pages 71{84, 2009.

[48] I. Batzianoulis, S. ElI-Khoury, E. Pirondini, M. Coscia, S. Micera, and A. Billard. EMG-based
decoding of grasp gestures in reaching-to-grasping motionsRobot. Auton. Syst., 91(C):59{70,
May 2017.

[49] R. Bischo, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schae er, A. Beyer, O. Eiberger,
S. Haddadin, A. Stemmer, G. Grunwald, and G. Hirzinger. The KUKA-DLR light weight
robot arm -a new reference platform for robotics research and manufactunig. In ISR 2010
(41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on
Robotics), pages 1{8, 2010.

[50] F. Artoni, A. Barsotti, E. Guanziroli, S. Micera, A. Landi, and F. Molteni . E ective
synchronization of EEG and EMG for mobile Brain/Body imaging in clinical s ettings. Frontiers
in Human Neuroscience 11:652, 2018.

[51] NVIDIA Corporation. NVIDIA TensorRT. Available: https://developer.nvidia.com/
tensorrt

[52] Intel Corporation. Intel Movidius Neural Compute Stick. Available: https://developer.
movidius.com/ .

[53] Paul A Merolla, John V Arthur, Rodrigo Alvarez-lcaza, Cassidy andrew S,Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million
spiking-neuron integrated circuit with a scalable communication netvork and interface. Science
345(6197):668{673, 2014.

[54] N. M. Schmidt, B. Blankertz, and M. S. Treder. Online detection of error-related potentials boosts
the performance of mental typewriters. BMC Neuroscience 13(1):19, 2012.

[55] R. Chavarriaga, A. Sobolewski, and J. del. R. Milan. Errare machinaleest: the use of error-related
potentials in brain-machine interfaces. Frontiers in Neuroscience, 8:208, 2014.

[56] M. G. Wentrup, K. Gramann, E. Wascher, and M. Buss. EEG source loalization for brain-
computer interfaces. InConference Proceedings. 2nd International IEEE EMBS Conference o
Neural Engineering, 2005, pages 128{131, 2005.

[57] M. Hamedi, S. Salleh, and A. M. Noor. Electroencephalographic motor imaggrbrain connectivity
analysis for BCI: A review. Neural Computation, 28(6):999{1041, 2016.

[58] T. Yu, Z. Yu, Z. Gu, and Y. Li. Grouped automatic relevance determination and its application
in channel selection for P300 BCls. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 23(6):1068{1077, 2015.

[59] M. Congedo, A. Barachant, and R. Bhatia. Riemannian geometry for EEG-based tain-computer
interfaces; a primer and a review. Brain-Computer Interfaces, 4(3):155{174, 2017.

[60] A. Fischer and C. Igel. An introduction to restricted boltzmann machines. In Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications, pages 14{36, 2012.

[61] VY. Li, J. Long, T. Yu, Z. Yu, C. Wang, H. Zhang, and C. Guan. An EEG-based BCI system for
2-d cursor control by combining Mu/Beta rhythm and P300 potential. |IEEE Transactions on

Gumpy: A Python Toolbox Suitable for Hybrid Brain-Computer Interfaces 25

Biomedical Engineering, 57(10):2495{2505, 2010.

[62] Y. Li, J. Pan, F. Wang, and Z. Yu. A hybrid BCI system combining P300 and SSVEP and its
application to wheelchair control. IEEE Transactions on Biomedical Engineering, 60(11):3156{
3166, 2013.

[63] J. DelPreto, A. F. Salazar-Gomez, S. Gil, R. M. Hasani, F. H. Guentherand D. Rus. Plug-and-
play supervisory control using muscle and brain signals for real-timeyesture and error detection.
In Proceedings of Robotics: Science and System2018.

	Introduction
	Related work
	BCILAB
	BCI2000
	MNE
	Wyrm
	OpenViBE
	Distinctive features of gumpy

	Gumpy toolbox: design, main functions and features
	General overview of gumpy's modules
	Gumpy's experimental paradigms
	Classic motor imagery movements
	Reach-to-grasp motor imagery movements
	Grasp poses and related finger forces from surface EMG signals
	Gumpy-SSVEP paradigm
	Gumpy's experimental paradigm for real-time hybrid BCI

	Gumpy's deep learning module
	Recurrent neural networks (RNN)
	Convolutional Neural Network (CNN)

	Offline analysis case studies
	Decoding of two motor imagery movements from Graz 2b EEG signals
	Standard Machine learning techniques
	Deep learning techniques

	Decoding of natural grasps from surface EMG signals

	Gumpy real-time applications
	Real-time Robot Arm Control using SSVEP-based BCI
	Real-time prosthetic hand using surface EMG signals
	Online hybrid BCI using EEG and surface EMG for reach-to-grasp movements
	Live generation of spectrograms

	Discussion and Conclusion
	Gumpy toolbox advantages
	Future development of gumpy toolbox
	Conclusion

	Supplementary Materials
	Source code and documentation
	Funding
	Acknowledgments

