Tayeb, Zied und Waniek, Nicolai und Fedjaev, Juri und Ghaboosi, Nejla und Rychly, Leonard und Widderich, Christian und Richter, Christoph und Braun, Jonas und Saveriano, Matteo und Cheng, Gordon und Conradt, Jorg (2018) Gumpy: a python toolbox suitable for hybrid brain-computer interfaces. Journal of Neural Engineering. Institute of Physics (IOP) Publishing. doi: 10.1088/1741-2552/aae186. ISSN 1741-2560.
PDF
1MB |
Offizielle URL: https://doi.org/10.1088/1741-2552/aae186
Kurzfassung
Objective. The objective of this work is to present gumpy, a new free and open source Python toolbox designed for hybrid brain-computer interface (BCI). Approach. Gumpy provides state-of-the-art algorithms and includes a rich selection of signal processing methods that have been employed by the BCI community over the last 20 years. In addition, a wide range of classification methods that span from classical machine learning algorithms to deep neural network models are provided. Gumpy can be used for both EEG and EMG biosignal analysis, visualization, real-time streaming and decoding. Results. The usage of the toolbox was demonstrated through two different offline example studies, namely movement prediction from EEG motor imagery, and the decoding of natural grasp movements with the applied finger forces from surface EMG (sEMG) signals. Additionally, gumpy was used for real-time control of a robot arm using steady-state visually evoked potentials (SSVEP) as well as for real-time prosthetic hand control using sEMG. Overall, obtained results with the gumpy toolbox are comparable or better than previously reported results on the same datasets. Significance. Gumpy is a free and open source software, which allows end-users to perform online hybrid BCIs and provides different techniques for processing and decoding of EEG and EMG signals. More importantly, the achieved results reveal that gumpy’s deep learning toolbox can match or outperform the state-of-the-art in terms of accuracy. This can therefore enable BCI researchers to develop more robust decoding algorithms using novel techniques and hence chart a route ahead for new BCI improvements.
elib-URL des Eintrags: | https://elib.dlr.de/121742/ | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||||||||||
Titel: | Gumpy: a python toolbox suitable for hybrid brain-computer interfaces | ||||||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||||||||||||||||||||||||||||||
Erschienen in: | Journal of Neural Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1088/1741-2552/aae186 | ||||||||||||||||||||||||||||||||||||||||||||||||
Verlag: | Institute of Physics (IOP) Publishing | ||||||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 1741-2560 | ||||||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Hybrid Brain-Computer Interfaces, Python toolbox, Deep Learning, EEG, EMG | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Terrestrische Assistenz-Robotik (alt) | ||||||||||||||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Saveriano, Matteo | ||||||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 29 Nov 2018 15:50 | ||||||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 13 Jun 2023 14:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags