Durner, Maximilian and Marton, Zoltan-Csaba and Kriegel, Simon and Brucker, Manuel and Riedel, Sebastian and Meinzer, Dominik and Triebel, Rudolph (2017) Automated Benchmarks and Optimization of Perception Tasks. IROS 2017: 2nd Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics, 2017-09-28, Vancouver, Canada.
PDF
12MB |
Abstract
Advanced robots operating in complex and dynamic environments require intelligent perception algorithms to navigate collision-free, analyze scenes, recognize relevant objects, and manipulate them. Nowadays, the perception of mobile manipulation systems often fails if the context changes due to a variation e.g. in the lightning conditions, the utilized objects, the manipulation area, or the environment. Then, a robotic expert is needed who needs to adjust the parameters of the perception algorithm and the utilized sensor or even select a better method or sensor. Thus, a high-level cognitive ability that is required for operating alongside humans is to continuously improving their performance based on introspection. This adaptability to changing situations requires different aspects of machine learning, e.g. storing experiences for life-long learning, creating annotated datasets for supervised learning through user interaction, Bayesian optimization to avoid brute-force search in high-dimensional data, and a unified representation of data and meta-data to facilitate knowledge transfer. Here we present how we automated and integrated different aspects of these.
Item URL in elib: | https://elib.dlr.de/120239/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||||||||||||||||||
Title: | Automated Benchmarks and Optimization of Perception Tasks | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 19 August 2017 | ||||||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Scene analysis, Bayesian optimization, Perception | ||||||||||||||||||||||||||||||||
Event Title: | IROS 2017: 2nd Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics | ||||||||||||||||||||||||||||||||
Event Location: | Vancouver, Canada | ||||||||||||||||||||||||||||||||
Event Type: | Workshop | ||||||||||||||||||||||||||||||||
Event Date: | 28 September 2017 | ||||||||||||||||||||||||||||||||
Organizer: | National Institute of Informatics, Japan | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Multisensorielle Weltmodellierung (old) | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||||||||||||||
Deposited By: | Durner, Maximilian | ||||||||||||||||||||||||||||||||
Deposited On: | 11 Jun 2018 15:38 | ||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:24 |
Repository Staff Only: item control page