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Problem Description

Optimizing task-execution performance of a robotic
system is complex. A robotic expert is required to
find poorly performed task steps, analyze reason for
poor behavior and identify solutions to handle the
identified problems.
“In the context of manufacturing, the greatest
potential is for functions that contribute to a
reduction of programming and configuration

requirements in deployed systems. There are clear
benefits for small lot size systems in reducing the
time and skill needed to reconfigure an adapt

systems to new processes.”
EU’s Robotics 2020 Multi-Annual Roadmap [1]

We propose a Pipeline Optimization Framework
(POF), which allows robots to improve its per-
ception performance utilizing logged experiences
and thus continuously improving their performance
based on introspection.
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Figure 1: Flow chart of the POF evaluation.

The general workflow surrounding the POF can be
described as follows and and is illustrated in Fig. 1.
During the Execution Phase (Fig. 1a), we create an
execution log containing raw sensory data, interme-
diate processing results and contextual information.
These are saved in a MongoDB object-orientated
database [2]. After the Execution Phase, the logged
data is reprocessed during the Optimization Phase
(Fig. 1b), with the goal to improve the perception
performance for further task executions. To enable
the optimization, a ground truth of the object scenes
needs to be given a priori.

Dataset

For our evaluation, we use the THR Dataset [3]
which contains both individual objects and scenes
with elements standing freely, and also mounted on
a rail (Fig. 2).
Additionally high quality models of the objects using
a hand-guided scanning system are acquired.
The dataset is publicly available:

http://www.dlr.de/rmc/rm/thr-dataset

Evaluation

We evaluate the POF on two of the most com-
mon visual perception problems, namely classifica-
tion and pose estimation.
For the classification task two alternative classi-
fiers are used: Linear SVM (linSVM), and Random
Forests (RF). As input features we use deep-learned
features (ResNet50 Network [4]) extracted from the
RGB images.
For estimating the pose of known objects in a depth
image, we use the method described in [5].
Two separated contexts are defined and evaluated
separately: unmounted object scenes and mounted
object scenes.
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Figure 2: Flowchart of the POF evaluation

Data splitting:
• Initialization: Single Object Samples
• Adaptation: Scene with multiple instances
• Evaluation: Scene with single object occurrence
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Figure 3: Results for classification task on all 9 objects
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Figure 4: Results for pose estimation on 4 objects; bar plot:
averaged root mean square error [mm] of detected objects;
white error values: average root mean square error [mm]
over all samples; right axis: object detection rate

Extension: Active Learning

In collaboration with the Institute for Artificial Intel-
ligence, University of Bremen [6]: Using automati-
cally labeled data for adaptation.

Figure 5: Accuracy of original classifier versus the adapted
one, trained with different amounts of manually labeled
training data. In the cases where some of the data was
automatically labeled, only the most confident, thus correctly
labeled, detections were used.
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