Durner, Maximilian und Marton, Zoltan-Csaba und Kriegel, Simon und Brucker, Manuel und Riedel, Sebastian und Meinzer, Dominik und Triebel, Rudolph (2017) Automated Benchmarks and Optimization of Perception Tasks. IROS 2017: 2nd Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics, 2017-09-28, Vancouver, Canada.
PDF
12MB |
Kurzfassung
Advanced robots operating in complex and dynamic environments require intelligent perception algorithms to navigate collision-free, analyze scenes, recognize relevant objects, and manipulate them. Nowadays, the perception of mobile manipulation systems often fails if the context changes due to a variation e.g. in the lightning conditions, the utilized objects, the manipulation area, or the environment. Then, a robotic expert is needed who needs to adjust the parameters of the perception algorithm and the utilized sensor or even select a better method or sensor. Thus, a high-level cognitive ability that is required for operating alongside humans is to continuously improving their performance based on introspection. This adaptability to changing situations requires different aspects of machine learning, e.g. storing experiences for life-long learning, creating annotated datasets for supervised learning through user interaction, Bayesian optimization to avoid brute-force search in high-dimensional data, and a unified representation of data and meta-data to facilitate knowledge transfer. Here we present how we automated and integrated different aspects of these.
elib-URL des Eintrags: | https://elib.dlr.de/120239/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||||||||||
Titel: | Automated Benchmarks and Optimization of Perception Tasks | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 19 August 2017 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Scene analysis, Bayesian optimization, Perception | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | IROS 2017: 2nd Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Vancouver, Canada | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||||||||||||||
Veranstaltungsdatum: | 28 September 2017 | ||||||||||||||||||||||||||||||||
Veranstalter : | National Institute of Informatics, Japan | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Durner, Maximilian | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 11 Jun 2018 15:38 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags