elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

MirrorSAR: A Fractionated Space Radar for Bistatic, Multistatic and High-Resolution Wide-Swath SAR Imaging

Krieger, Gerhard and Zonno, Mariantonietta and Rodriguez Cassola, Marc and Lopez Dekker, Paco and Mittermayer, Josef and Younis, Marwan and Huber, Sigurd and Villano, Michelangelo and Queiroz de Almeida, Felipe and Prats, Pau and Moreira, Alberto (2017) MirrorSAR: A Fractionated Space Radar for Bistatic, Multistatic and High-Resolution Wide-Swath SAR Imaging. In: International Geoscience and Remote Sensing Symposium (IGARSS). IEEE. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2017-07-23 - 2017-07-28, Fort Worth, USA. doi: 10.1109/IGARSS.2017.8126916.

[img] PDF
1MB
[img] PDF
11MB

Abstract

This paper introduces the new and highly capable concept of a fractionated MirrorSAR which has the potential to serve a wide range of Earth observation applications with unique remote sensing products. The proposed system is based on a set of mutually separated transmitter and receiver satellites. As opposed to previously published bi- and multistatic SAR systems, the receiver satellites are considerably simplified, as their main functionality is reduced to a kind of microwave mirror (or space transponder) which merely routes the radar echoes towards the transmitter(s). The routed signals from one or more receiver satellites are then coherently demodulated within the transmitter(s) by using the same oscillator that had been used for radar pulse generation. By this, one can avoid the necessity of a bidirectional phase synchronization link between the transmitter and receiver as currently employed in TanDEM X. The joint availability of all receiver signals in a centralized node offers moreover new opportunities for efficient data compression, as the multistatic radar signals from close satellite formations are characterized by a high degree of mutual redundancy. As the receiver satellites become rather simple in this approach, it becomes possible to scale their number without cost explosion, thereby paving the way for novel applications like multi-baseline SAR interferometry and single-pass tomography. Several additional opportunities make such a configuration even more attractive. First, the separation between the transmitter and receiver satellites enables a new approach to image ultra-wide swaths with very high resolution, thereby overcoming an inherent limitation of conventional monostatic SAR systems. Second, the system capabilities can be further scaled by adding multiple transmitters which enable several new MIMO-SAR modes including adaptive and hybrid MIMO-SAR imaging and MIMO-SAR tomography. A further advantage arises from the separation of the transmitter and receiver front-ends, which will reduce losses and allows for a significant reduction of the peak power by employing a highly efficient frequency-modulated continuous wave illumination (FMCW).

Item URL in elib:https://elib.dlr.de/114778/
Document Type:Conference or Workshop Item (Speech)
Title:MirrorSAR: A Fractionated Space Radar for Bistatic, Multistatic and High-Resolution Wide-Swath SAR Imaging
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Krieger, GerhardUNSPECIFIEDhttps://orcid.org/0000-0002-4548-0285UNSPECIFIED
Zonno, MariantoniettaUNSPECIFIEDhttps://orcid.org/0000-0001-9537-1899UNSPECIFIED
Rodriguez Cassola, MarcUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Lopez Dekker, PacoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Mittermayer, JosefUNSPECIFIEDhttps://orcid.org/0000-0001-7238-4240UNSPECIFIED
Younis, MarwanUNSPECIFIEDhttps://orcid.org/0000-0002-8563-7371UNSPECIFIED
Huber, SigurdUNSPECIFIEDhttps://orcid.org/0000-0001-7097-5127UNSPECIFIED
Villano, MichelangeloUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Queiroz de Almeida, FelipeUNSPECIFIEDhttps://orcid.org/0000-0001-5929-6633UNSPECIFIED
Prats, PauUNSPECIFIEDhttps://orcid.org/0000-0002-7583-2309UNSPECIFIED
Moreira, AlbertoUNSPECIFIEDhttps://orcid.org/0000-0002-3436-9653UNSPECIFIED
Date:July 2017
Journal or Publication Title:International Geoscience and Remote Sensing Symposium (IGARSS)
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
DOI:10.1109/IGARSS.2017.8126916
Publisher:IEEE
Status:Published
Keywords:bistatic, multistatic, synchronisation, new space, fractionated, FMCW, interferometry, tomography
Event Title:IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
Event Location:Fort Worth, USA
Event Type:international Conference
Event Start Date:23 July 2017
Event End Date:28 July 2017
Organizer:IEEE GRSS
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Development of a mini-SAR, R - SAR missions
Location: Oberpfaffenhofen
Institutes and Institutions:Microwaves and Radar Institute > Radar Concepts
Microwaves and Radar Institute > SAR Technology
Microwaves and Radar Institute
Deposited By: Krieger, Dr.-Ing. Gerhard
Deposited On:23 Oct 2017 08:15
Last Modified:24 Apr 2024 20:19

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
OpenAIRE Validator logo electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.