Sagardia, Mikel and Hulin, Thomas (2016) A Fast and Robust Six-DoF God Object Heuristic for Haptic Rendering of Complex Models with Friction. ACM Symposium on Virtual Reality Software and Technology (VRST), 2016-11-02 - 2016-11-04, Garching, Munich. doi: 10.1145/2993369.2993374.
PDF
3MB |
Official URL: http://www.vrst2016.lrz.de/
Abstract
Collision detection and force computation between complex geometries are essential technologies for virtual reality and robotic applications. Penalty-based haptic rendering algorithms provide a fast collision computation solution, but they cannot avoid the undesired interpenetration between virtual objects, and have difficulties with thin non-watertight geometries. God object methods or constraint-based haptic rendering approaches have shown to solve this problem, but are typically complex to implement and computationally expensive. This paper presents an easy-to-implement god object approach applied to six-DoF penalty-based haptic rendering algorithms. Contact regions are synthesized to penalty force and torque values and these are used to compute the position of the god object on the surface. Then, the pose of this surface proxy is used to render stiff and stable six-DoF contacts with friction. Independently of the complexity of the used geometries, our implementation runs in only around 5 us and the results show a maximal penetration error of the resolution used in the penalty-based haptic rendering algorithm.
Item URL in elib: | https://elib.dlr.de/107438/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Keynote) | ||||||||||||
Title: | A Fast and Robust Six-DoF God Object Heuristic for Haptic Rendering of Complex Models with Friction | ||||||||||||
Authors: |
| ||||||||||||
Date: | 2 November 2016 | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | No | ||||||||||||
In ISI Web of Science: | No | ||||||||||||
DOI: | 10.1145/2993369.2993374 | ||||||||||||
Page Range: | pp. 163-172 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | haptic rendering, virtual assembly, haptic devices, interaction techniques | ||||||||||||
Event Title: | ACM Symposium on Virtual Reality Software and Technology (VRST) | ||||||||||||
Event Location: | Garching, Munich | ||||||||||||
Event Type: | international Conference | ||||||||||||
Event Start Date: | 2 November 2016 | ||||||||||||
Event End Date: | 4 November 2016 | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||
DLR - Research theme (Project): | R - Vorhaben On-Orbit Servicing - GNC und VR (old) | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||
Deposited By: | Sagardia, Mikel | ||||||||||||
Deposited On: | 30 Nov 2016 17:43 | ||||||||||||
Last Modified: | 24 Apr 2024 20:12 |
Repository Staff Only: item control page