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Abstract

Collision detection and force computation between complex ge-
ometries are essential technologies for virtual reality and robotic
applications. Penalty-based haptic rendering algorithms provide a
fast collision computation solution, but they cannot avoid the un-
desired interpenetration between virtual objects, and have difficul-
ties with thin non-watertight geometries. God object methods or
constraint-based haptic rendering approaches have shown to solve
this problem, but are typically complex to implement and computa-
tionally expensive. This paper presents an easy-to-implement god
object approach applied to six-DoF penalty-based haptic render-
ing algorithms. Contact regions are synthesized to penalty force
and torque values and these are used to compute the position of the
god object on the surface. Then, the pose of this surface proxy is
used to render stiff and stable six-DoF contacts with friction. In-
dependently of the complexity of the used geometries, our imple-
mentation runs in only around 5µs and the results show a maximal
penetration error of the resolution used in the penalty-based haptic
rendering algorithm.

Keywords: haptic rendering, virtual assembly, haptic devices, in-
teraction techniques

Concepts: •Software and its engineering → Virtual worlds
training simulations; •Human-centered computing → Haptic
devices; •Computing methodologies→ Virtual reality;

1 Introduction

Haptic rendering algorithms bring via haptic interfaces the sense of
touch to the user who interacts in virtual manipulations. This helps
comprehend more intuitively the assembled geometries, leading to
increased accuracies [Sagardia et al. 2012]. One of the major chal-
lenges of haptic rendering is the fast computational speed required
for stability: every 1 ms contacts must be processed and displayed
to the user [Basdogan and Srinivasan 2002], which often leads to
approximations and trade-off situations.

The majority of developed algorithms can be classified into three
main paradigms depending on their force computation principle:
impulse-based, penalty-based, and constraint-based approaches.
Impulse-based approaches explicitly modify the velocity of objects
when contacts are detected by applying small impulses, as done
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by [Mirtich 1996]. Penalty-based methods, on the other hand, de-
tect the overlapping error (usually penetration or volume) to either
compute a force or simulate a plausible motion upon contact us-
ing the Newton-Euler equations. A well known example is the
Voxelmap-Pointshell (VPS) Algorithm presented by McNeely et
al. [McNeely et al. 1999]. Finally, constraint-based approaches
such as one the presented by Zilles and Salisbury [Zilles and Sal-
isbury 1995], prevent overlap between objects. Basically, the user
controls the device pose or the haptic tool, but a proxy or so-called
god object is visualized. Even though the device object would go
through the other geometry, that god object would always remain
on the surface boundary. In this sense, the focus lies on determining
the constrained movement of the object. Forces are rendered out of
the difference between the device and the proxy pose.

Our work presents a constraint-based god object haptic render-
ing algorithm that can be applied to any penalty-based method.
As a result, usually fast and easy to implement penalty-based ap-
proaches can benefit from more stable and harder contacts common
for constraint-based algorithms. In addition, the tunneling effect or
pop-through issues that typically arise when interacting with thin
surfaces using penalty-based algorithms are overcome.

1.1 Related Work

To the best of our knowledge, Zilles and Salisbury coined the term
god object for their constraint-based three-DoF haptic rendering al-
gorithm [Zilles and Salisbury 1995] in 1995. This method gives
rise to a series of works based on optimization approaches. In case
of contact, in order to obtain the pose of the proxy on the surface,
the authors minimized the energy of a spring between the penetrat-
ing point linked to the haptic device (known) and a parametrized
proxy point, constrained to the collision plane.The problem is eas-
ily solvable by using the Lagrange multipliers. Similarly, Ruspini
et al. [Ruspini et al. 1997] minimized the distance between the pen-
etrating point and the proxy, but constrained the region outside of
several contact half-planes. In both cases, the idea is related to the
Gauss’ principle of least constraints [Gauss 1829], which states that
the motion of a mechanical system satisfies the minimum of the dif-
ferences’ norm between the constrained (proxy) and unconstrained
(haptic device) accelerations. Redon et al. [Redon et al. 2002b] an-
alyzed the advantages of this principle for rigid body simulations
and Ortega et al. [Ortega et al. 2006] applied it for six-DoF hap-
tic rendering. The method proposed by the last authors computes
the force rendering in a separate asynchronous thread in order to
achieve the 1 kHz update rate necessary for haptic interaction [Bas-
dogan and Srinivasan 2002], since the used continuous collision
detection [Redon et al. 2002a], in combination with the god object
pose simulation, exceeds that performance threshold when contact
regions increase. This decoupling opens up the possibility to testing
other collision detection methods and experimenting with simplifi-
cations in the proxy pose computation.

In recent years, several optimization-based approaches have also
been presented. Chan et al. [Chan et al. 2011] applied the Gauss’
least constraints principle for six-DoF haptic rendering using volu-
metric medical imaging and point clouds formed by unordered ob-
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ject vertices. Rydén and Chizeck [Rydén and Chizeck 2013] ap-
plied the same basic principle of rigid body mechanics to streamed
point clouds and voxelmaps to obtain six-DoF haptic rendering.
Wang et al. [Wang et al. 2013] adapted the quadratic programming
approach from [Ortega et al. 2006] to the six-dimensional configu-
ration space. These authors use a sphere-based collision detection
first and then minimize the distance between the proxy and the de-
vice.

It is also possible to constrain the god object to the surface with-
out explicitly formulating the task as an optimization problem. In
this sense, Salisbury and Tarr [Salisbury and Tarr 1997] presented
a very interesting three-DoF haptic rendering algorithm for implicit
surfaces. The method works as follows: first, when the device point
penetrates the surface, its closest surface point is detected with a
deepest descend algorithm, and a support tangent plane is com-
puted on it; then, in each cycle, the projection of the device point
on the tangent plane is computed, which leads to the closest sur-
face point using the same deepest descend algorithm. The tangent
plane is updated every cycle. Displayed forces are related to the
distance between the device and the surface point. This algorithm
has been exploited in recent years for three-DoF haptic interaction
with streamed point clouds by Leeper et al. [Leeper et al. 2012],
and with deformable volumetric medical image data by Chan et
al. [Chan et al. 2013]. Our heuristic approach works on a similar
idea to the one presented by Salisbury and Tarr to six-DoF haptic
rendering.

Besides collision forces, friction is an important contact phe-
nomenon which contributes to manipulation realism, particularly
in virtual interactions with haptic feedback. We refer the reader
to [Andersson et al. 2007] for a brief but through glimpse on ba-
sic concepts related to this topic. That work describes and presents
simulation results of several friction models applied to a one-DoF
system. Additionally, most important phenomena, model proper-
ties, advantages and disadvantages are discussed.

Unfortunately, many collision, movement and friction simulation
methods from computer graphics such as the work in [Kaufman
et al. 2005] usually require longer computation times than the 1 kHz
necessary in haptics. Therefore, simplifications or heuristics are re-
quired. Hayward et al. [Hayward and Armstrong 2000] presented
a very complete three-DoF friction model suited for haptic render-
ing. They improved the Dahl friction model cancelling the drifting
effect and provided a set of useful approximations. Their model
yields the four friction regimes observed in physical reality: stick-
ing, creeping, oscillating, and sliding. Harwin and Melder [Har-
win and Melder 2002] presented a three-DoF friction computation
method similar to the one introduced in [Salisbury and Tarr 1997].
The method is easy to implement and applied upon the god ob-
ject algorithm presented in [Zilles and Salisbury 1995]: a cone is
placed on the penetrating device point and the proxy is allowed to
move until the boundary of the intersection between the cone and
the surface. This approach allows for static (dry) and kinetic (slid-
ing) friction. Kawasaki et al. [Kawasaki et al. 2011] extended the
previous approach to six-DoF. Their method is able to compute fric-
tion moment based on the torsion angle between the god and device
reference frames. Additionally, they implemented the model in a
hand-finger force feedback device to provide finger torque friction
and conducted a user study on torque friction perception.

1.2 Overview and Key Contributions

Our heuristic operates in the configuration space (six-dimensional
pose) of rigid bodies with arbitrary geometry and provides with six-
DoF constraint (frictional) forces and correct proxy pose simulation
with 1 kHz. Upon contact, the proxy is constrained to the surface

using the forces and torques and the penetration depth computed by
a penalty-based algorithm. These penalty forces inherently model
contact geometry and, thus, restrict the motion of the object. Our
contributions (and the overview of the paper) are summarized as
follows:

• A six-DoF god object simulation and constraint force com-
putation heuristic which is fast, robust and easy to implement
on any penalty-based haptic rendering algorithm that provides
with signed distances (Section 2).

• A six-DoF friction model applied to our god object heuristic
that comprises static, kinetic viscous friction regimes (Sec-
tion 2.7).

• Experimental results that show the behavior of our method in
several usual and worst-case scenarios (Section 3).

As we conclude in Section 4, following the implementation steps
we provide, it is possible to easily convert virtually any penalty-
based haptic rendering algorithm to be a constraint based approach
which benefits from the advantages of both paradigms: ease, speed,
stability, and stiffness.

2 God Object Heuristic

This section presents step by step our god object simulation and
force rendering method giving implementation details. Neverthe-
less, we omit initializations and division-by-zero, saturation, and
similar checks for the sake of clarity. Furthermore, we consider
the two-object scenario: the first object is moved by the user via
the haptic device with respect to the second one; if we observe the
relative movements, we can assume the second object stands still
without loss of generality – although it may actually be moving.

As convention, bold capital symbols (H) denote homogeneous
transformation matrices in R4×4, bold small symbols (x, h) vec-
tors in R3 or R6, and small italic symbols (p) scalars in R. Points,
lines and surfaces in R3 are denoted with capital italic symbols
(P , L) and a vector between two given points P and Q is de-
noted

−−→
PQ. In the case of poses (translation and rotation), we use

the matrix representation for homogeneous coordinate transforma-
tions and the vector representation for all other transformations,
as we believe this notation helps understand our method more in-
tuitively. Values are transformed from one representation to an-
other with functions like setMatrix(), getRotation() or
getTranslation(). Additionally, a transformation from the
coordinates W to D is denoted WHD. All values correspond to the
current cycle (k) except when properly indicated (e.g., H = H(k)
vs. H(k − 1)).

As shown in Figure 1, there are three main frames:

W The world frame, which we will consider fixed in the center
of mass of the still object.

D The haptic device frame, which corresponds to the end-
effector of the device moved by the user.

S The proxy, god or surface frame, which corresponds to the
object that remains on the surface. This frame is corrected to
solve its penetration p, which leads to S′.

We also use the body frame B when deducing mass distribution
properties of the object; the original geometry is supposed to be
defined in this coordinates, located in its center of mass G. In the
same line, the eigen frame E results from performing a principal
component analysis of the body.
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Figure 1: Overview of the god object simulation in two consec-
utive time steps k − 1 (previous) and k (current). Main frames
corresponding to the world (W), the device (D) and the proxy, god
object or surface (S) are displayed. In our method, first the previous
surface frame is corrected to S′(k − 1). Then, the motion from this
S′(k − 1) to the current device pose D(k) is constrained with the
force and torque values fP, tP computed by the penalty-based col-
lision detection algorithm. This yields the new current god object
pose S(k).

The goal of the method is to compute a virtual-constrained proxy
pose WHS of the moved object with respect to the other (still) ob-
ject given the coordinates of the haptic device’s end-effector WHD.
WHD is the pose of the moved object commanded by the device,
which can penetrate the other object. On the other hand, WHS is
the pose of the proxy or god-object which tries to remain on the
surface in case of collision. The computation of the proxy pose
constrained to the surface results from restricting the transforma-
tion from the previous proxy pose to the current device pose with
the penalty contact forces related to the proxy.

Figure 2 gives an overview of the whole procedure that is repeated
every haptic cycle (1 ms). All eight steps depicted in it are described
in detail in their respective subsections. We give a brief summary
here to convey a global idea of the procedure:

#1 Penalty Contacts (Section 2.1): Penalty-based collision detec-
tion is performed using the previous god object pose. An im-
portant requirement is that we slightly dilate one object with
a safety margin d to avoid real penetration between the ob-
jects approaching to each other and to obtain less noisy, more
robust collision forces. The value of d could be optimized
online, but we fix it to d = 3 mm in our simulations after
empirical trials, since it already produces a stable a behavior.
This step yields the signed distance or penetration value pd
and the penalty forces fP and torques tP.

#2 Correction Step (Section 2.2): If the god object is penetrating
(pd ≥ d) in the previous cycle, its corrected non-penetrating
pose is computed, minimizing the error introduced in previous
cycle. This step is the one that required the longest section in
this work, but, still, it is the one with the fastest computation
times, since analytical correction formulae for any geometry
and contact configuration are derived.

#3 Unconstrained Motion (Section 2.3): The movement of the
god object is computed as if no collision constraints were
present.

#4 Constrained Motion (Section 2.4): The unconstrained motion
is corrected with the contacts computed in step #1. The fric-
tion is also computed in this step #4 in the object configura-
tion space (Section 2.7). The constrained motion leads to the
current (unfiltered) god object or proxy pose.

Penalty Contacts
#1

Correction Step
#2

Unconstrained Motion
#3

Constrained Motion
#4

Filter Proxy Pose
#5

fP, tP, pd, d

Haptic Device
#8

fVC, tVC

fD, tD
W H D (k )W H S (k − 1)

S’ H D ⟷	xu, ru

ΔHpen
 ⟶	S’(k − 1)

W H S (k − 1)

Apply k D, b D
#7

ΔHsurf
 ⟶	W H S(k )^

Constraint Force
#6

W H S (k ) ⟷	S(k )
 k  ⟶	k − 1

Figure 2: Workflow of our god object simulation and force render-
ing method. Shadowed boxes #2 – #6 are core steps that define
the our approach; the other steps could be changed without al-
tering considerably the result, particularly our approach is suited
for other penalty-based contact rendering algorithm (step #1). The
whole procedure is repeated every 1 ms, being the contact compu-
tation (step #1) the one which lasts longer. Note that the procedure
is fed with the god object pose of the previous cycle WHS(k − 1),
as well as the current device pose WHD(k).

#5 Filter Proxy Pose (Section 2.5): The current god object pose
is smoothened with a low pass filter.

#6 Constraint Force (Section 2.6): Constraint forces fVC, tVC

are proportional to the difference between the current device
and the god object pose, or, in other words, linear to the non
allowed movement performed by the device. Friction forces
are intrinsically considered (Section 2.7).

#7 Apply kD, bD (Section 2.6): Stiffness and damping factors are
multiplied to the constraint forces in order to achieve desired
hard contact on device being still stable.

#8 Haptic Device (Section 2.6): Device forces fD, tD are com-
manded to the haptic device and the pose of the end-effector
is read every 1 ms.

The coordinates of the deepest colliding point Q are unknown but
its penetration pd is provided by the penalty-based collision com-
putation. Note in Figure 1 that three regions are distinguished on
its value:

A, pd ≥ d: There is overlapping between objects. If the un-
constrained motion of the device frame moves in opposite di-
rection of the penalty forces fP and torques tP , it must be
constrained to the surface.

B, 0 < pd ≤ d: There is no overlapping between objects but
the deepest colliding point Q is inside the safety layer, which
has a width d over the surface. The approach is similar to the
previous case, except for slight modifications in several steps,
properly indicated.

C, pd < 0: There is no overlapping between objects. In this
case, the god object pose is the device pose, S(k) = D(k),
and therefore, there is no constraint coupling force to display,
fVC, tVC = 0.

We will consider the cases in which Q lies on either A or B, since
the last case of the region C has the mentioned trivial solution.
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Figure 3: Data structures of the penalty-based collision computa-
tion algorithm used. (a) Two sphere hierarchy levels of a Stanford
Bunny; (b) Several point hierarchy levels; (c) Two voxel layers of
a Utah Teapot; (d) Section of the signed distance field; (f) – (g) A
colliding point Pi with normal ni in a voxel with voxel layer value
v(Pi), center C and voxel edge size s.

2.1 Penalty-Based Contact Computation (#1)

The first step is accomplished performing a penalty-based colli-
sion computation based on the Voxelmap-Pointshell (VPS) algo-
rithm [McNeely et al. 1999], which was improved by several au-
thors [Barbič and James 2008], [Sagardia et al. 2014].

Figure 3 shows the data structures we generate for any complex
geometry (non-convex, hollow, millions of triangles) and the basic
principle the algorithm works with achieving computation frequen-
cies higher than 1 kHz.

In a colliding object pair, one of them is a voxelmap or a signed
distance field embedded in a voxel grid, where each voxel contains
a voxel layer value v ∈ N; this value encodes the distance to the
surface, being v = 0 for voxels on the surface, v < 0 outside of the
object, and v > 0 inside. The other object is a pointshell or point-
sphere tree with points and normals (or 6D points) that represent
the surface of the object organized in a hierarchy. Each hierarchy
level samples the whole object with a different resolution. Mini-
mally bounding spheres contain these surface points and are used
to speed up the detection of colliding areas. Once collision areas
are detected, the signed distance of the points V (P ) that belong to
them is evaluated in a level-of-detail manner (see Figure 3 (g)):

V (P ) = v(P )s+ nTe + d, (1)

where s is the voxel edge size (constant in uniform grids) and e
the vector from the point to the center C of the voxel where it is
located. The safety distance d dilates the voxelmap artificially, as
previously introduced.

All points with V (Pi) > 0 are colliding with the dilated vox-
elmap. The deepest colliding point Q has a penetration of pd =
maxi{V (Pi)}. Additionally, single penalty forces and torques (ex-
pressed in the center of gravity G) associated to each points with
V (Pi) > 0 are defined as

fi = V (Pi)ni, ti =
−−→
GPi × fi. (2)

The total penalty force {fP, tP} is the sum of all single forces
{fi, ti}.

These values are already penalty forces that can be displayed to the
user. However, penalty-based haptic rendering has the disadvan-
tages mentioned in Section 1. Since we control the collision de-
tection algorithm, a constraint-based approach could be developed
using the whole contact manifold computed in this step. Neverthe-
less, we want to make our god object simulation method available
for any penalty-based collision computation algorithm other than
ours; therefore, we will use only the most common four values:

fP, tP, pd, d. Any algorithm able to provide them can be used in-
stead of our reimplementation of the VPS.

2.2 Correction of the Previous Proxy Frame (#2)

In this section we compute the step ∆Hpen necessary to obtain the
corrected surface frame S′(k − 1) out of the previous god object
pose WHS(k−1). If the method were perfect, no correction would
be necessary. However, since contacts are linearized, the predicted
proxy might minimally penetrate the surface and it is necessary to
resolve this overlap for minimizing the introduced error.

First, we define several parameters used throughout all sections.
Then the generalized mass matrix in the center of mass G is com-
posed of the real mass (MB) and the inertia tensors (JB) of the body
with mass m, computed out of the data structures defined in Sec-
tion 2.1:

M =
[

MB 0
0 JB

]
=
[
mI 0
0 mσJ

]
∈ R6×6, (3)

with I the identity matrix and

σ = 3

…
det
(

1

m
JB

)
. (4)

We rather use the normalized version of the inertia tensor J, of
which all elements are close to 1. While J changes the direction of
vectors when premultiplied, it is the inertia coefficient σ the factor
that mainly changes their length. As the reader will see in the fol-
lowing sections, the mass m drops from the equations. Hence, it
has no effect on the god object simulation, but only σ and J do.

In the same line, we define following normalized directions out of
the penalty forces and torques (in object S(k − 1) coordinates):

ux = uf =
fP
‖fP‖

, ut =
tP

‖tP‖
, ur =

J−1ut

‖J−1ut‖
. (5)

Their associated magnitudes are the real effective penetration p and
the force-torque lever distance δ:

p = pd − d, δ =
‖tP‖
‖fP‖

. (6)

At this point, we define the translation (∆xp) and rotation (∆rp)
vectors necessary to solve the penetration p of the god object in the
previous time stamp:

∆xp = λpux,

∆rp = θ (λ, p)ur.
(7)

In this last equation (7), we have two important (still) unknown pa-
rameters associated to the current penalty values: θ is the correction
rotation step, whereas λ ∈ [0, 1] is the translation-rotation distribu-
tion factor. If λ = 1, then θ = 0, hence, the frame S(k− 1) is only
translated a distance p along the ux direction to obtain the corrected
S′(k − 1). On the other hand, if λ = 0, then θ = θmax, hence, the
frame S(k − 1) is only rotated θmax units around ur to obtain the
corrected S′(k − 1). Usually, the real values lie somewhere in be-
tween. We provide in the next two sections analytical closed form
formulae for θ(λ, p) and λ.
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Figure 4: Computation of the correction rotation θ. On the left, the equivalent system of a 2D Stanford Bunny is built, consisting of the
eigen-ellipsoid E(JB) and the force application line L(fP, tP), on which the equivalent deepest colliding point QL with penetration p lies.
The distance from QL to the center of mass G is the rotation radius r. On the right, a region is zoomed where the point QL is rotated around
G with its radius r (with exaggerated dimensions for the sake of clarity). The rotation θ brings Q to Q′L, which is distance p away from QL
along the force application line L. The rotation θ(p, δ, r) should fully solve the penetration p; its value is deduced in Section 2.2.1.

2.2.1 Computation of the Correction Rotation (θ)

In this section, we will consider the case θ = θmax, i. e., the pen-
etration p is fully transformed into a rotation. We assume that the
equivalent system presented here can fully solve the penetration by
rotating. The correct optimum expression for θ(λ, p) ∈ [0, θmax]
that automatically regulates that assumption is provided at the end
of the subsection.

A first approximation of the rotation required for fully solving the
penetration could be

θmax '
p

δ
⇒ θ ' p

δ
(1− λ). (8)

Unfortunately, (8) overestimates the necessary rotation in some
cases. Therefore, we improve that approximation working on the
equivalent system shown in Figure 4. This system is built essen-
tially using the eigen ellipsoid of the object and the penalty contact
forces and torques from step #1 (Section 2.1). This eigen ellipsoid
results from the principal axis analysis of the inertia tensor.

For that purpose, and before starting the simulation, the eigen val-
ues s1, s2, s3 and eigen vectors e1, e3, e3 are computed using the
inertia tensor JB of the body on G. The rotation which brings from
the body coordinates B to the eigen coordinates E is

BRE = [e1 e3 e3] ∈ R3×3. (9)

On the other hand, the eigen ellipsoid E centered in G and ex-
pressed in the eigen coordinates {x1, x2, x3} is

E(JB) ≡
3∑
i=1

x2
i

a2
i

=
x2

1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

= 1, (10)

with the axis lengths ai computed out of the eigen values sj

a2
i =

5

2

3∑
j=1

(−1)αsj , α = 0 iff j 6= i, α = 1 otherwise.

(11)

Additionally, the force application line L expressed parametrically

in the eigen coordinates E is

L(fP, tP) ≡ δ EuA + µ Euf =

δ BRE (ut × uf)︸ ︷︷ ︸
A=
−−→
GA

+µ BREuf =

(δ1, δ2, δ3) + µ (u1, u2, u3).

(12)

The unitary vector EuA from (12) points from the center of mass
G to A, whereas Euf is the unitary force direction. The point A is
the closest single force application point for the wrench {fP, tP}.
It is not a material point on the body, but we consider it to be
a material point of our equivalent system, composed by E(JB)
in (10) and L(fP, tP) in (12). Note that in the eigen coordinates
E, G = 0 = (0, 0, 0), however, we still name it for correctness and
general validity.

Since E equivalently displays the mass distribution of the body, we
define QL to be the closest point on the line L to the ellipsoid E.
The distance from QL to the center of mass G is the rotation ra-
dius r, a key value to define the rotation θ:

r = ‖
−−−→
GQL‖, such that min ‖L|QL

− E‖2. (13)

As it can be seen in Figure 4, r ≥ δ. To find QL, we first substitute
L in E, what leads to

3∑
i=1

δ2
i + 2δiuiµ+ u2

1µ
2

a2
i

= 1. (14)

This expression in (14) is a second order equation in µ, with all
values δi and ui known. If it has two real roots µ1, µ2, the line
L intersects with the ellipsoid E, what leads to two possible force
application points QL,1 and QL,2 substituting µ1 and µ2 in (12),
respectively. In case both points are different, we select to be QL
the one which satisfies the condition that the force is in opposite
direction to the ellipsoid’s surface normal:

QL = QL,i s. t. ∇E|QL,i

Euf ≤ 0, i = 1, 2, (15)

being ∇E = (2x1/a
2
1, 2x2/a

2
2, 2x3/a

2
3) the gradient of the eigen

ellipsoid, thus, its parametrized surface normal.

However, if no real roots exist for (14), the line L and the ellipsoid
E are disjoint, hence, we are dealing with the case shown in Fig-



ure 4 (left). Instead of treating the problem as a constrained opti-
mization, it is possible to solve QL using projective geometry. Few
operations using homogeneous coordinates lead to the point S on
E which is closest to L:

S =
−→
GS =

(a2
1δ1, a

2
2δ2, a

2
3δ3)√

(a2
1δ

2
1 + a2

2δ
2
2 + a2

3δ
2
3)
. (16)

With S known, QL can easily be determined:

QL =
−−−→
GQL =

−→
GA+ ((

−→
AS)T Euf)

Euf . (17)

The values of the rotation radius r and the force lever δ are enough
to estimate the maximum rotation θ the body requires to fully solve
a penetration p. We refer the reader to the right part of Figure 4,
where QL is rotated an angle θ around G with a radius r, as if it
was a material point. The resulting rotated positionQ′L is a distance
p away from QL along the direction of the forces Euf . From the
figure, we can deduce the following relationships between angles
and distances

γ =
π − θ

2
, β =

θ

2
+ α, sinα =

δ

r
. (18)

Since p is expected to be small with respect to the size of the object,
so will be θ; therefore, we can consider

α� θ ⇒ β ' α ⇒ sinβ ' sinα. (19)

Additionally, due to the small value of θ, the arc and the segment
joining QL and Q′L will be very similar:

QLQ′L ' Q̇LQ′L ⇒ p

sinβ
' rθ. (20)

Therefore, using (18) and (19) in (20) yields

θ ' p

r
(1− λ) sinα =

δ

r2
p(1− λ). (21)

Note that if r = δ, we obtain the approximation we have done
in (8), in other words, using the first approximation in (8) instead
of (21) increases the possible correction rotation in a factor of r/δ.

2.2.2 Computation of the Correction Translation-Rotation
Distribution (λ)

Since in the correction step the object is moved from S(k − 1) to
S′(k−1), we choose to distribute (λ) the translation and rotation of
that movement by minimizing the required kinetic energy e, com-
puted as

e =
1

2
m‖ẋG‖2 +

1

2
ωT

Ñ
(mσJ)︸ ︷︷ ︸

JB

ω

é
. (22)

The linear (ẋG) and angular (ω) velocities required for the correc-
tion during time step ∆t are

ẋG =
∆xp
∆t

=
λp

∆t
ux,

ω =
∆rp
∆t

=
θ(λ, p)

∆t
ur.

(23)

Introducing ẋG and ω from (23) into (22), we obtain

e =
m

2∆t2
(
λ2p2 + στθ2

)
, (24)

with

τ =
urut

‖J−1ut‖
=

(
J−1ut

)T
ut

‖J−1ut‖2
. (25)

For a minimum value of kinetic energy e on λ, the equation (24)
must satisfy

∂e

∂λ
= 0 ⇒ λp2 + στθ

∂θ

∂λ
= 0. (26)

If we introduce the definition of θ from (21) into (26) and solve for
λ, we obtain the analytical value of the translation-rotation distri-
bution:

λ =
1

1 +
r4

στδ2

∈ [0, 1]. (27)

2.2.3 Assembly of the Final Correction Step

At this point, the correction step transformation matrix ∆Hpen

which transforms from S(k − 1) to S′(k − 1) can be assembled
using the translation and rotation step vectors from (7):

∆Hpen ←

{
setMatrix(η∆xp, η∆rp) if Q ∈ A[

I 0
0 1

]
∈ R4×4 otherwise.

(28)

The gain η = 0.2 helps regulate the speed with which the object is
moved to the surface – instead of doing it suddenly, it is performed
exponentially along several haptic cycles. Note that if the deepest
point Q 6∈ A (i.e., pd ≤ d ⇔ p ≤ 0), the corrected previous god
frame must be the same as the uncorrected one: S′(k−1) = S(k−
1). However, the correction step vectors ∆xp and ∆rp from (7)
still have to be computed, since they are used when computing the
unconstrained motion in step #3 (next Section 2.3). In that case
(Q 6∈ A), since p < 0, their meaning does not refer to the movement
required to solve penetration, but to the movement allowed before
collision occurs.

With ∆Hpen from (28) (in object coordinates S(k − 1)), the cor-
rected pose of the god object in the previous iteration (k − 1) (in
world coordinates W) is

WHS′(k − 1) = WHS(k − 1)∆Hpen, (29)

being WHS(k − 1) the god object pose delivered in the previous
iteration (k − 1).

From here on, the corrected frame S′(k−1) is used instead of S(k−
1), and all movement constraint direction vectors are transformed
to it:

ux ← S′
ux = ∆Rpenux

ur ← S′
ur = ∆Rpenur,

(30)

being

∆Rpen ← getRotationMatrix(∆Hpen). (31)
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Figure 5: Computation of the constrained movement xc out of the unconstrained xu using the movement direction constraint ux. For
simplicity, a 2D version using only translations is shown – the computation of constrained rotation is analogous, but using ru and ur instead.
Big dots represent the deepest colliding point Q (with penetration p) of the object in different frames. Blue vectors display the intended
unconstrained movement from S′(k−1) to D(k). Green vectors are the parallel (‖) and orthogonal (⊥) components of xu with respect to ux

which are allowed. Red vectors are the parallel components of xu which are not allowed. The constrained motion xc is the sum of all allowed
components. Subfigures (a) and (b) correspond to the case Q ∈ A, whereas (c) and (d) to the case Q ∈ B, being d the safety distance.

Although the deduction we provide in this subsection might appear
relatively long, it is computed in few microseconds, because we
have derived analytical formulae that provide a correction for any
object in any configuration.

2.3 Computation of the Unconstrained Motion (#3)

The unconstrained motion of the god object is the transformation
from the previous corrected god frame S′(k − 1) to the current
device frame D(k), as shown in Figure 1:

S′
HD = WH−1

S′
WHD. (32)

We break down this unconstrained motion into its translation (xu)
and rotation (ru) parts

xu ← getTranslation(S′
HD)

ru ← getRotation(S′
HD)

(33)

and decompose each of them in parallel (‖) and orthogonal (⊥)
components with respect to the movement constraint directions (ux

and ur, respectively):

xu = xu,‖ + xu,⊥; ru = ru,‖ + ru,⊥, (34)

where

xu,‖ = (xT
uux)ux; xu,⊥ = xu − xu,‖;

ru,‖ = (rTuur)ur; ru,⊥ = ru − ru,‖.
(35)

2.4 Computation of the Constrained Motion (#4)

Figure 5 summarizes the computation of the constrained motion
vectors xc and rc. Essentially, the parallel components of the un-
constrained vectors are cancelled or shortened in order to obtain
the constrained vectors. For the sake of brevity, we explain the
procedure with translation vectors (x, ux) only; The computations
with rotation vectors are completely analogous, but using rotation
constraint direction vector ur.

As for the unconstrained motion, the constrained movement vector
is the summation of its parallel and orthogonal components with

respect to the motion constraints (ux):

xc = xc,‖ + xc,⊥, (36)

where always

xc,⊥ = xu,⊥. (37)

On the other hand, the parallel component of the unconstrained mo-
tion are allowed iff it does not increase penetration in a linearized
contact model based on ux. If Q ∈ A ⇔ p ≥ 0 (see Figure 5 (a)
and (b)), the contact constraint model leads to

xc,‖ =

ß
xu,‖ if (xu,‖)

Tux ≥ 0,

0 otherwise.
(38)

Otherwise, if Q ∈ B⇔ −d < p ≤ 0 (Section 5 (c) and (d)):

xc,‖ =

ß
xu,‖ if (xu,‖)

Tux ≥ 0,

−min{‖xu,‖‖, ‖∆xp‖}ux else.
(39)

Recall from Section 2.2.3 that the correction vectors ∆xp,∆rp de-
note the minimum motion to solve penetration for the case Q ∈ A
and the minimum motion to reach contact for the case Q ∈ B.

We call restricted or friction parallel movement to the difference
between the unconstrained and constrained motion vectors:

xr,‖ = xu,‖ − xc,‖. (40)

This vector, always displayed in red in Figure 5, is the parallel com-
ponent which is not allowed and a key value for computing friction
in Section 2.7.

At this point, we can assemble the transformation ∆Hsurf in Fig-
ure 1 which transforms from S′(k − 1) towards S(k):

∆Hsurf = S′(k−1)HS(k) ← setMatrix(xc, rc). (41)

With this step transformation along the surface, the current but still
unfiltered god object or proxy is computed:

WĤS(k) = ∆Hsurf WHS′(k − 1). (42)



We could use this transformation to define the final god object
frame, but we observed better results applying some filtering to it,
as explained in next Section 2.5.

2.5 Filtering of the Proxy Pose (#5)

We apply a simple discrete exponential six-DoF low pass filter to
WĤS(k) based on the previous proxy pose WHS(k − 1) in or-
der smoothen the movement of it on the surface. The filter was
tested with many complex geometries and several parameter val-
ues; with the presented configuration no overlaps or artifacts have
been observed. For an optimum behavior, the cut-off frequency
fc is lineally evaluated from the difference between WĤS(k) and
WHD(k):

WHS(k)← LowPass(WHS(k − 1),WĤS(k),WHD(k)︸ ︷︷ ︸
∆→ fc ∈ [1,60] Hz

). (43)

The value taken by fc depends on the stiffness of the haptic device
and the contact configuration, but we scale it to the range [1, 60]
Hz. A typical contact situation with a distance from S(k) to D(k)
of about 7 mm can reach a value of fc ' 20 Hz.

This filtered god object pose WHS(k) describes the proxy frame
S(k). It is used

(i) to visualize the non-penetrating object,

(ii) to compute the coupling constraint force as explained in
next Section 2.6,

(iii) and to obtain the penalty contact manifold in the next cycle
(k + 1), as explained in Section 2.1.

2.6 Coupling Forces Applied to the Haptic Device (#6,
#7, #8)

Finally, the constraint coupling forces are computed in the step # 6
(see Figure 2). For that, the difference between the haptic device
pose and the virtual god-object pose is computed first:

DHS(k) = WH−1
D (k).WHS(k). (44)

Then, after obtaining the vector representation of (44),

xVC ← getTranslation(DHS(k)),

rVC ← getRotation(DHS(k)),
(45)

virtual coupling stiffness constants are applied to it:

fVC = kVC,x xVC; tVC = kVC,r rVC. (46)

We have experimentally set the stiffness constants to be kVC,x = 1
and kVC,r = 0.025 (unit-less factors).

As a last step, the maximum virtual stiffness (kD) and the corre-
sponding damping (bD) of the haptic device are applied to fVC, tVC

before displaying them to the user as fD, tD. In our experiments
(see Section 3), we used a DLR/KUKA Light Weight Robot trans-
formed as a haptic device [Hulin et al. 2008]. The usual constant
values for the haptic device are kD = 4000 N/m and bD = 20 Ns/m.
However, in the simulations shown in the attached video, moder-
ate (kD = 2000 N/m) and low (kD = 200 N/m) stiffness values
are used. Lower constants allow deeper penetrations of the device,
which is more challenging, and it also becomes visually more no-
ticeable how the god object remains on the surface.

S’= S

D(k )

x r, ∣∣S(k )
x u 

u x

x fr

S0(k )

x u, ⊥ 

! x,k ! x,s

x u, ∣∣

Figure 6: Friction model which operates in the pose configuration
space of the object (case Q ∈ A displayed, (c) from Figure 5).
The apex of the friction cone is placed in D(k) and its axis is the
opposite of the restricted parallel movement defined in (40): −xr,‖.
The angle of the cone is defined with the static (µx,s) and/or kinetic
(µx,k) friction coefficients. The current proxy frame S(k) is moved
to the boundary of the cone using xfr . Static, kinetic and viscous
friction are possible for both translations and rotations. In this
figure, the final pose of S(k) due to kinetic friction is displayed
with a filled green dot.

2.7 Six-DoF Friction (#4)

In order to compute friction forces, we operate in the object con-
figuration space and restrict the constrained movement of the proxy
xc with a friction restriction movement xfr:

xc = xc,‖ + xc,⊥ + xfr. (47)

This friction restriction movement is computed using the allowed
perpendicular motion xu,⊥ and the not allowed parallel motion xr,‖
introduced in (40):

xfr ← computeFriction(xr,‖,xu,⊥). (48)

Algorithm 1 summarizes the computation of xfr and Figure 6 illus-
trates it for translations. Our method is similar to approaches pre-
sented by [Salisbury and Tarr 1997], [Harwin and Melder 2002],
[Kawasaki et al. 2011], all introduced in Section 1.1. The basic
idea consists in, first, computing friction cones with apex in D(k)
and axis parallel to ux, and then, sliding S(k) to the cone bound-
aries, achieved by adding xfr to the constrained movement xc. As
shown in Algorithm 1, there can be friction only if there is not al-
lowed parallel motion (‖xr,‖‖ > 0), i.e., the user is applying a
force/movement in opposite direction to the surface. In that case,
the friction vector xfr will always point in the opposite direction
to xu,⊥ and its length will depend on the type of movement and
friction associated to it:

(i) Static friction – If the perpendicular movement is fully con-
tained in the static friction cone, the object will not move per-
pendicularly, i.e. xfr = −xu,⊥. The aperture of the static
cone is defined with the static friction coefficient µx,s.

(ii) Kinetic friction – If, on the contrary, the perpendicular move-
ment is outside of the friction cone, a new (smaller) kinetic
cone is computed and the length of xfr is set to reach the
boundary of the cone. Hence, the object will move, but less
than in the frictionless case and tangential forces proportional
to the length of xfr are going to be present. The aperture
of the kinetic cone is defined with the kinetic friction coeffi-
cient µx,k.

(iii) Viscous friction – In the case kinetic friction occurs, the length
of xfr is additionally increased proportionally to the perpen-



dicular velocity (xu,⊥) using the factor µx,v .

Note that our friction model works also with rotations with the same
algorithm but using the rotation vectors (rc, rr,‖, ru,⊥, xfr) and
friction coefficients (µr,s, µr,k, µr,v) instead. In the case of rota-
tions, the computations are more difficult to illustrate, but, when
applying friction, essentially, the amount of rotation from S′(k−1)
to S(k) is decreased without altering the axis of rotation.

Friction coefficients can be measured or looked up in tables. In our
experiments we have achieved most stable behaviors by choosing
first the static friction coefficients µx,s and µr,s (≈ 0.2) and then
fixing µk ≈ 0.9µs and µv ≈ 0.01µs.

Algorithm 1: xfr = computeFriction(xr,‖, xu,⊥)

Data: Allowed perpendicular motion xu,⊥
and not allowed parallel motion, xr,‖.

Result: Motion restriction due to friction, xfr .

// Initialize default friction restriction1
xfr = 02

if ‖xr,‖‖ > 0 then3
if ‖xu,⊥‖ < µx,s‖xr,‖‖ then4

// Static friction5
xfr = −xu,⊥6

else7
// Kinetic friction8

xfr = −µx,k‖xr,‖‖
xu,⊥
‖xu,⊥‖9

// Viscous friction10
xfr ← xfr − µx,vxu,⊥11

return xfr12

3 Experiments and Results

We have performed several benchmarking experiments, three of
them shown in Figure 7 and in the additional video submitted with
this paper. The first one consists in interacting with a Stanford
Bunny and a Utah Teapot. Second, the same bunny hits a thin sur-
face to check that it does not pop through. And finally, a peg object
is introduced into a hole, in such a ways that roughly 90% of all its
points collide. Figure 8 shows the results of the first bunny-teapot
scenario. Contact and computation time values are plotted for hit-
ting, sliding and ear-insertion tasks.

In all tested scenarios stable, stiff and realistic forces were al-
ways generated, and the god object remained visually on the sur-
face. The penetration (pd, Section 2.2) moved below the used voxel
size, which defines our maximum resolution. Additionally, the to-
tal computation time (steps #1 – #7) stayed always easily below
the 1 ms convention even when the several thousands of colliding
points were reached. In particular, the bunny-teapot benchmark re-
sults in Figure 8 show that our god object method requires only
around 5µs for collision cases.

4 Conclusions

We presented an easy-to-implement constraint-based force com-
putation method that can be applied to penalty-based haptic ren-
dering algorithms. As shown in the results, our method computes
six-DoF collision forces with the advantages of both approaches
even with complex objects and collision situations: computational

(a)

(b) (c)

Figure 7: Three benchmarking scenarios: (a) A Stanford Bunny
collides against a Utah Teapot and the bunny’s ear is introduced
into the handle of the teapot, (b) The Stanford Bunny collides
against a thin plane, (c) A classical peg-in-hole benchmark. The
green object is always voxelized. The red mesh is the representa-
tion of the (unconstrained) object moved by the user, whereas the
blue one is the god object constrained to the surface of the green
object. Yellow boxes highlight challenging areas where the compu-
tation of the constrained object is successfully achieved.

speed (only around 5µs) and accuracy (error bounded by the reso-
lution of data structures). Additionally, our algorithm computes six-
DoF static and dynamic frictional forces. Our future work will deal
with the comparison of our method with other available approaches
and with its evaluation in user studies. Extending our algorithm to
multi-body scenarios would be also a very interesting direction.

References
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