Nuricumbo, Jorge René and Ali, Haider and Marton, Zoltan Csaba and Grzegorzek, Marcin (2015) Improving object classification robustness in RGB-D using adaptive SVMs. Multimedia Tools and Applications : An International Journal, pp. 1-19. Springer. doi: 10.1007/s11042-015-2612-7. ISSN 1380-7501.
PDF
- Only accessible within DLR
2MB |
Official URL: http://dx.doi.org/10.1007/s11042-015-2612-7
Abstract
Nowadays object recognition is a fundamental capability for an autonomous robot in interaction with the physical world. Taking advantage of new sensing technologies providing RGB-D data, the object recognition capabilities increase dramatically. Object recognition has been well studied, however, known object classifiers usually feature poor generality and, therefore, limited adaptivity to different application domains. Although some domain adaptation approaches have been presented for RGB data, little work has been done on understanding the effects of applying object classification algorithms using RGB-D for different domains. Addressing this problem, we propose and comprehensively investigate an approach for object recognition in RGB-D data that uses adaptive Support Vector Machines (aSVM) and, in this way, achieves an impressive robustness in cross-domain adaptivity. For evaluation, two datasets from different application domains were used. Moreover, a study of state-of-the-art RGB-D feature extraction techniques and object classification methods was performed to identify which combinations (object representation - classification algorithm) remain less affected in terms of performance while switching between different application domains.
Item URL in elib: | https://elib.dlr.de/97149/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Improving object classification robustness in RGB-D using adaptive SVMs | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 16 May 2015 | ||||||||||||||||||||
Journal or Publication Title: | Multimedia Tools and Applications : An International Journal | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1007/s11042-015-2612-7 | ||||||||||||||||||||
Page Range: | pp. 1-19 | ||||||||||||||||||||
Publisher: | Springer | ||||||||||||||||||||
ISSN: | 1380-7501 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Adaptive SVM; aSVM; RGB-D; Kinect | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Multisensorielle Weltmodellierung (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||||||
Deposited By: | Ali, Haider | ||||||||||||||||||||
Deposited On: | 09 Jul 2015 10:28 | ||||||||||||||||||||
Last Modified: | 08 Mar 2018 18:37 |
Repository Staff Only: item control page